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1. Introduction 

Congestion in morning commute brings inconvenience to people’s daily life. Recently, 

numerous studies have focused on the management policies of public transits during the peak 

hour (Kraus & Yoshida, 2002; Lan et al., 2010; Tang et al., 2020). Also, various fare schemes 

have been considered, such as peak fares and off-peak discounts (Currie, 2010; Peer et al., 2016; 

Tang et al., 2020; Yang & Tang, 2018). Yang and Tang (2018) put forward a fare-reward scheme 

(FRS) to minimize the system cost on the premise of ensuring a constant revenue of the transit 

operator. This scheme stipulates that commuters can get the reward for a free rail transit travel 

at the beginning or the end in the morning commute, after a certain number of paid travels.  

However, these studies excluded the random congestion, which is often experienced by 

commuters when they transfer to the bus after getting off the rail transit. That is because the 

time of bus travel highly depends on the traffic conditions. Thus, it may have an impact on the 

commuters’ travel behavior, and then affect the implementation of fare schemes. In this study, 

build upon the work of Yang and Tang (2018), we investigate the impact of random delay. We 

first analyze the commuters’ travel behavior with all uniform fares, and then classify them into 

three equilibrium cases according to the extent of random delay. Further, we derive the optimal 

FRS, and measure the system efficiency promoted by this scheme. This study sheds light on 

discussing the influence of random delay on the effectiveness of FRS, and provides a basis for 

transportation managers to formulate more realistic fare schemes.  

2. The Model 

2.1. Equilibrium Analysis 

We consider the commute includes two parts, i.e., 𝑁 commuters take the rail transit first 

and then transfer to the bus to go to the workplace. In the transit travel, commuters experience 

a bottleneck with capacity 𝑠 caused by excessive transit queues. It is equivalent to a classic 

bottleneck model (Vickrey, 1969). In the bus travel, there is a random delay 𝑇, and 𝑇~U(0, 𝑏). 



Without loss of generality, we assume that the work start time 𝑡∗ = 0, and the time of other 

parts, including the transfer and the free flow, is zero. Thus, we can formulate the expected 

travel cost of commuters who pass through the bottleneck at time 𝑡,  

𝐶(𝑡) = 𝛼𝑞(𝑡) + 𝛽𝑒(𝑡) + 𝛾𝑙(𝑡) + 𝜀𝑇 + 𝑝0, (1) 

where 𝛼, 𝛽, 𝛾, and 𝜀 denotes the shadow value of queuing, early arrival, late arrival, and the 

congestion, 𝛽 < 𝛼 < 𝜀 < 𝛾 (Small, 1982); 𝑞(𝑡), 𝑒(𝑡), and 𝑙(𝑡) denote the time; 𝑝0 is the 

uniform fare without FRS. The three user equilibrium cases solved are shown in Table 1.  

Table 1. Equilibrium cases of commuters’ arrival with different random delay.  
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2.2. Fare Reward Scheme 

When introducing FRS to the morning commute, this period is divided into three intervals: 

the central one is a uniform fare interval (UFI), and the two shoulders are the free fare intervals 

(FFIs). The UFI is defined as [𝑡𝑖, 𝑡𝑗] , where 𝜆𝑁  commuters are charged a uniform fare 𝑝 

each. In FFIs, commuters can take a free rail transit. FRS must meet the following conditions:  

𝑡𝑗 − 𝑡𝑖 =
𝜆𝑁

𝑠
;      𝜆𝑁𝑝 = 𝑁𝑝0;      𝐴𝐸𝐶(𝜆) ≥ 𝐴𝐸𝐶; (2) 

where the first formula represents the travel time of 𝜆𝑁  commuters; the second ensures a 

constant revenue for the operator; and the third shows commuters in UFI cost no less than those 

in FFIs. Our purpose of implementing FRS is to minimize the total system cost 𝑇𝑇𝐶, which is 

the expected time cost of all commuters in the whole system (i.e., excluding the fares). Further, 

when deriving the optimal FRS, we need to select: (1) the UFI [𝑡𝑖, 𝑡𝑗]; and (2) the fare ratio 𝜆.  

Proposition 1. Given the fare ratio 𝜆, the total system cost 𝑇𝑇𝐶 is minimized if and only if 

the commuters pass through the bottleneck at time 𝑡𝑖 and 𝑡𝑗 don’t queue before the bottleneck.  

Proposition 2. Given the UFI [𝑡𝑖, 𝑡𝑗], the conditions of FRS (i.e., Eq (2)) can be simplified into 

an inequality about the fare ratio, i.e., 𝑓(𝜆) ≤ 𝑝0. The optimal fare ratio 𝜆∗ = argmin𝑇𝑇𝐶(𝜆), 



and d𝑇𝑇𝐶(𝜆)/d𝜆 = −𝑁(d𝑓(𝜆)/d𝜆).  

Proposition 1 means that when deriving the optimal FRS, one only need to solve the 

scenario described, and choose the best fare ratio from these scenarios. Proposition 2 simplifies 

the process of selecting the fare ratio 𝜆, and suggests us that 𝑝0 will affect the setting of 𝜆∗. 

Combing Propositions 1 and 2, we can derive the optimal FRS. Corollary 1 indicates that the 

implementation effect of FRS may be affected by a low initial fare 𝑝0.  

Corollary 1. In each case, given other parameters, we can always find a reference fare 𝑝∗. If 

𝑝0 ≥ 𝑝∗, the optimal FRS is implemented with only one choice of 𝜆∗; if 𝑝0 < 𝑝∗, the sub-

optimal FRS is implemented with two choices of 𝜆∗.  

3. Numerical Studies 

In this section, we use the data of three metro rail lines in Hong Kong (Annual Report 

2015) (see Table 2). According to previous researches (Small et al., 2005; Ubbels et al., 2005) 

and the assumption in this study, we set 𝑁 = 𝑠 = 75000 , 𝛼 = 70HKD/h , 𝛽 = 50HKD/h , 

𝛾 = 100HKD/h, and 𝜀 = 90HKD/h. Three scenarios are designed, i.e., 𝑏 = 0.1h, 0.7h, and 

1.5h. The results of the optimal FRS are listed in Table 2, where 𝜙 and 𝜑 are the percentages 

of total system cost reduction (system efficiency) and personal travel cost reduction (personal 

efficiency), respectively; Δ𝑇𝑇𝐶 and Δ𝐴𝐸𝐶 are the values of cost reduction. Comparing the 

results of each rail line across scenarios, the efficiencies decrease as 𝑏 increases. When 𝑏 is 

large (in S3), the effect of FRS is limited. However, when 𝑏 is moderate or small (in S1 and 

S2), the effect is considerable, and the system efficiency ranges from 11% to nearly 20%.  

Table 2. The implementation of the optimal FRS.  

 Metro rail line 𝑝0 𝜆∗ 𝜙 (%) 𝜑 (%) Δ𝑇𝑇𝐶 (×105 HKD) Δ𝐴𝐸𝐶 (HKD) 

S1 O 7.5 0.34 or 0.66 19.82 15.85 5.625 7.50 

 I 11.0 0.50 22.03 16.39 6.250 8.33 

 W 23.0 0.50 22.03 13.26 6.250 8.33 

S2 O 7.5 0.50 or 0.56 11.57 10.09 5.625 7.50 

 I 11.0 0.53 11.61 9.68 5.649 7.53 

 W 23.0 0.53 11.61 8.38 5.649 7.53 

S3 O 7.5 0.58 4.6 4.2 3.608 4.8 

 I 11.0 0.58 4.6 4.1 3.608 4.8 

 W 23.0 0.58 4.6 3.7 3.608 4.8 

4. Conclusion and Discussion 



In this study, we consider a combined rail transit and bus commuting model with random 

delays and solve the equilibrium cases. On this basis, we discuss the implementation effects of 

FRS. We use a numerical example to illustrate the results. The formulas, derivation processes, 

and other examples will be shown in the full paper. Considering random delays, we demonstrate 

that FRS is still applicable when the random delay is not so large, and present a method for 

finding the optimal FRS (including the uniform fare interval and the fare ratio). This study 

expands the application scope of FRS, and provides insights on randomness consideration in 

traffic management.  
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1 Introduction

The Intelligent Video Analytics (IVA) project, sponsored by Lazio Region, aims to redefine traffic safety
by integrating advanced Artificial Intelligence (AI) with 5G connectivity. Its primary goal is to develop
a real-time infrastructure-to-vehicle (I2V) communication system to enhance road safety. Through
real-time video processing, IVA detects anomalies like accidents, queue formations, and dangerous
driving behaviors, featuring an innovative hardware module equipped with an AI-accelerated processing
board and a 5G modem which enables localized data analysis and rapid transmission to Mobile Edge
Computing (MEC) infrastructure.

The algorithms developed address scenarios such as accident detection, wrong-way driving, queue
formation, and fire detection, while also analyzing vehicle trajectories to identify risky behaviors. A
deep learning-based trajectory tracking model ensures precise tracking and handles complex scenes
with high accuracy (Aharon et al., 2022). A convolutional neural network extracts features and uses
matching algorithms to associate detections with existing tracks (Zhang et al., 2021), while advanced
optimization techniques (Wojke et al., 2017) ensure consistent tracking even in challenging conditions
involving occlusions or overlaps.

IVA’s event detection and trajectory tracking capabilities can be an essential tool for traffic control
rooms and for implementing I2V communication, enabling real-time communication to road users. In
fact, immediate alerts reduce risks by helping drivers make informed decisions, avoid hazardous areas,
and adjust routes in real-time. Moreover, the rapid dissemination of information minimizes delays and
enhances overall traffic flow, contributing to a safer and more efficient transportation network.

This paper investigates the impact of communicating detected events to road users, focusing on the
definition of optimal information configuration in terms of spatial distribution, temporal reactivity, and
the type of information provided. The study develops simulation scenarios using dynamic traffic assign-
ment models that incorporate mixed traffic flows, encompassing both human-driven and autonomous
vehicles, to evaluate how different communication strategies affect traffic safety and congestion. The
paper is structured as follows: the Methodology section defines the communication scenarios; the Re-
sults section presents simulations conducted in the EUR district of Rome, Italy; and the Conclusion
section summarizes key findings and proposes directions for future research.

2 Methodology

The objective of this analysis is to compare a baseline scenario, without communication interventions,
to project scenarios that leverage advanced technologies, including I2V communication systems, for
detecting and communicating traffic conditions (such as the IVA module). Simulations are conducted
to assess the impact of various information solutions on traffic flow and safety, modeling both human-
drivers and autonomous vehicles’ response in a dynamic traffic environment. The goal is to identify
the conditions and parameters that maximize the effectiveness of the proposed interventions.
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Several parameters are considered for scenario creation, including cameras distribution, congestion
levels, event duration, and user communication coverage. A baseline Scenario 0 models normal traffic
conditions using Dynamic User Equilibrium Assignment, representing the natural distribution of users
on the network under standard conditions, serving as a benchmark to compare subsequent scenar-
ios. High-risk hotspots, identified through historical accident data, are analyzed under scenarios that
simulate incidents and lane reductions with varying severities, including full road closures.

The "project" scenarios incorporate combinations of different congestion levels (standard conditions
and 30% increased demand), event durations (30 and 60 minutes), and incident severities (from 0%
to 100% capacity reduction). Vehicle information penetration rates are varied from 0% to 100%,
assuming full network-wide information rather than localized communication. Key performance indi-
cators are collected both system-wide and for vehicles directly impacted, providing a comprehensive
understanding of network performance under extraordinary conditions.
Then, simulation scenarios with targeted communication on specific incidents are designed to evaluate
the effectiveness of direct user notifications. These scenarios are analyzed across four key aspects:

• Spatial Distribution: Evaluates how the geographical coverage of notifications impacts the
vehicles response;

• Temporal Reactivity: Assesses the timeliness of communication by analyzing user responses
based on how quickly the information reaches them. Two primary scenarios are considered: 1)
Real-time communication via infrastructure-to-vehicle (I2V) systems, where vehicles are notified
at the exact moment the incident occurs, simulating the immediate response of the IVA system; 2)
Delayed communication, where I2V systems are integrated with centralized processes, simulating
scenarios where incident detection, alert transmission to a control room, and decision-making
processes introduce a range of different delays;

• Type of Information Provided: Explores the effectiveness of three types of communication
strategies in diverting traffic and reducing congestion: 1) Congestion warning, allowing users
to voluntary deviations to better routes, if available; 2)Optional detour, suggesting alternative
routes but leaving users free to choose whether to follow the detour or stay on the original route;
3) Mandatory detour, enforcing compulsory deviations.

• Vehicle Reaction: Analyzes the behavior of human-driven and autonomous vehicles in response
to the provided information. Differences in compliance, route adjustment, and overall network
impact are considered to highlight the implications for mixed traffic environments.

The modeling of Temporal Reactivity, Types of Information, and User Reactions is based on consoli-
dated methodologies implemented in the Dynasmart dynamic traffic assignment model, which serves
as the foundation for these scenario developments. Instead, the phase of Spatial Distribution of inci-
dent communication involves the following steps: 1) Identifying the incident location; 2) Defining the
attention radius; 3) Identifying affected road links; 4) Selecting strategic road links for communication;
and 5) Iteratively optimizing communication configurations.

Using GIS tools, the incident location is mapped on the OpenStreetMap (OSM) network. A buffer-
based approach with adjustable radii is then used to define the area of attention, representing potential
traffic impact zones where users may be influenced. The radius is iteratively refined based on simulation
results to maximize the effectiveness of communication while minimizing disruptions. Affected road
links are identified through spatial and directional analysis: spatial queries determine which road links
intersect the buffer, and directional analysis ensures only links directing traffic toward the incident are
selected. A connectivity propagation method is applied to build a tree of connected segments leading
to the incident, systematically capturing directly and indirectly affected links:

• Initialization: Given the road network G, the set of affected links Lk is initialized at iteration
k = 0 with the link where the incident occurs, lij , where i and j represent the upstream and
downstream nodes of the link, respectively:

Lk=0 = {li,j} (1)
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• Propagation: For subsequent iterations (k ≥ 1), the set of affected links Lk+1 is expanded as
follows:

Lk+1 = Lk ∪ {lm,i : ∀i ∈ li,j ∈ Lk} (2)

Here: - Lk is the set of affected links at iteration k. - lm,i represents any link in the network
where m is the upstream node, and i is the downstream node of any link li,j ∈ Lk.

• Termination: The process continues iteratively untilno new links are added to the set.

Lk+1 = Lk (3)

The final set Lf includes all links leading toward the incident site. Lastly, strategic links for com-
munication are identified to enhance the efficient dissemination of information. For each attention
radius, links in the network with an hourly traffic flow exceeding a defined threshold Sl are prioritized.
If the number of qualifying links falls below a specified minimum Smin, additional links with traffic
flows slightly below are included to meet the required minimum number of links per buffer. As the
radius expands, links selected in smaller buffers are retained to ensure continuity and consistency in
the communication strategy.

3 Results

The selected study area for simulation scenario is the EUR district of Rome. This area covers a total
of 51 km² and is divided into 54 traffic zones, as depicted in Figure 1(a), which illustrates the adopted
zoning system. The road network in the study area consists of 400 nodes and 812 links, providing
an interconnected structure suitable for testing various urban mobility scenarios. For the simulations,
an origin-destination (OD) matrix containing 2,916 OD pairs is used, representing the travel demand
within the area. The simulation scenarios span 4 hours of the morning peak period, from 08:00 to
12:00. This includes a pre-load phase of 30 minutes and a network unloading phase of 1 hour to ensure
a realistic representation of traffic dynamics.

Figure 1: The EUR case study: (a) Zoning system (b) Incident Hotspots

Localized analyses were conducted based on identified incident hotspots, shown in Figure 1(b). These
hotspots were selected due to their high potential for traffic disruptions, analysing the frequency of
traffic incidents and their severity. Surrounding each hotspot, spatial buffers of varying radii were
applied to capture the extent of the incident’s impact on the network and to assess the effectiveness
of different communication strategies in mitigating congestion and delays. Preliminary results analyze
the impact of real-time traffic information on the road network in the presence of an incident. The
objective is to compare network performance, both overall and for vehicles directly affected by the
incident, by varying the percentage of vehicles receiving real-time information from 0% to 100%.
To ensure consistency across scenarios, the following baseline conditions are maintained: 1) Regular
traffic congestion, representing a non-overloaded network; and 2) A fixed incident duration of 60
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minutes, simulating a significant disruption. Figure 2 illustrates how the average travel times decrease
and speeds improve as a higher percentage of vehicles receive real-time information. These results
demonstrate the benefits of real-time communication in enhancing overall network performance. The
study will also present the outcomes of a localized analysis, focusing on scenarios where punctual
communication of the event is provided in real-time to vehicles potentially impacted by the incident,
offering insights into the effects of targeted communication strategies on traffic flow and delays.

Figure 2: (a) Average Travel Times and (b) Speeds with varying levels of en-route information.

4 Conclusion

This study demonstrates the significant benefits of real-time traffic information, facilitated by direct
I2V communication, in mitigating the impact of incidents or hazards on urban road networks. Using
dynamic traffic assignment models, the analysis of the developed simulation scenarios highlights that
increasing the percentage of users receiving real-time information reduces travel times and improves
traffic flow. Localized analyses further reveal the effectiveness of targeted communication strategies in
minimizing delays and optimizing traffic distribution in affected areas. These findings underscore the
importance of timely and accurate I2V communication and information dissemination, paving the way
for more efficient and resilient transportation systems. Future research will focus on refining specific
communication strategies for each localized incident hotspot.
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Long Abstract 

 

Short abstract 

The aim of this study is to develop a tool that can compute the train load throughout its route while accounting for 

time-dependent demand and potential failure or cancellation. We achieve this through a few stages of activity. First, 

we suggest a dynamic study of the underground transit system of Milan, Italy. With four lines, 110 links, and 107 

stations—including 21 junctions, sometimes referred to as transfer stations—this transport system serves as the 

city's main hub for mobility. The flows on trains and links are calculated with a one-minute resolution using two 

data sets concerning passenger movements (both entering and leaving stations). The data sets pertain to a week in 

2018, when the pandemic scenario had no effect on demand. After that, an ad hoc written assignment procedure is 

used to process the data. To examine how the exposure or significance of each station varies over time and how the 

train load varies from station to station, the results of those computations are displayed at various aggregate 

intervals. Changes become increasingly smoother as the observation interval is increased from one minute to thirty 

minutes, resembling the use of a low-pass filter. This suggests that aggregating data may result in inaccurate 

findings for some applications (such as security-related ones). 

 
Keywords: Underground networks evaluation, flow assignment, dynamic analysis, train load, segment load, station flows 

1. Introduction 

Undoubtedly, the analysis of the topology of underground networks is an intriguing and useful first step in 

comprehending their behavior and operation. The relationship between supply and demand actually determines the 

operational state, whether it is dynamic or in equilibrium, as it does in all other transportation systems. Thus, 

demand and supply (including topology) can be combined into a special framework that enables a thorough 

explanation of the network's operation. This work wants to answer to the following questions: "How can the train 

scheduling be changed to avoid saturation of train capacity?" or, in a similar vein: "How many additional trains must 

be scheduled to achieve a certain level of service?". Or alternatively, "How many train trips can be cancelled before 

experiencing saturation phenomena?". 

Finding stations, links, and trains that are more vulnerable to malfunctions or operating decreases due to the 

heavy load on them, is then one of our goals. However, in the event of an interruption, we would like to know how 

well a network is performing. The fact that demand varies throughout the day is another factor. Therefore, a time-

dependent analysis must be performed in order to gather all the data needed for managing and controlling the 

transportation network. Determining an appropriate time frame is definitely challenging since it must guarantee 

comprehensive findings while minimizing the computational load. 

In this research, in describing an underground network, we devise a general approach that takes supply and 

demand into account. We require the network graph, the hourly passenger flow entering and leaving the network, 

and the time-dependent Origin-Destination (OD) matrix. We utilise this methodology to examine the Milan 

underground network as an example. Actually, this approach can be used in any kind of transport network as long as 

the scheduled service and all passenger movements (entering and exiting the stops) are known. Naturally, the 
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conclusions reported here are only relevant to the Milan case study because they rely on the particular OD 

distribution, time, and quantity demands. 

This study's demand is based on data from a week in 2018 and includes the flow of people coming into and going 

out of Milan's underground stations. In order to assign each passenger (accessing the station) to a certain route that 

will get them to their ultimate destination (the leaving station), a trip assignment must be completed. The automated 

fared data (tickets that show the real trip data for each passenger) that is gathered from the service provider is used to 

build the OD matrix. 

After assigning each passenger to a route, we calculate the load on each edge of the graph based on time in order 

to obtain a dynamical image of the operational network, as well as the load of each train over time and edges. 

2. The overall methodology 

The steps in the research approach are as follows: 

- Preparation of basic tools: graph and datasets. 

- Data on passenger flows are examined and reviewed for consistency and missing data, 

- Hourly demand (the turnstiled data) is separated into intervals of one to ten minutes, 

- Demand is assigned to the network, 

- Passenger flow is computed by station, segment, and train. 

2.1. The graph 

Due to data collected in 2018, Milan's underground network is comprised of four lines (red M1, green M2, yellow 

M3, and lilac M5). The blue line M4 was opened in 2022 but eventually completed in 2024. The four lines have 121 

stations in all. In topological terms, several stations are the same transfer station since they have direct links between 

crossing lines. Therefore, there are 107 stations and 110 links on the graph at the conclusion. With the code for each 

station, Fig. 1 shows the entire Milan underground network graph.  

 

Fig. 1. The graph of the underground network of Milan, Italy (the three primary transfer stations are denoted by nodes of different colours: blue 

for Cadorna, green for Porta Garibaldi, and yellow for Centrale station). 

2.2. The data sets 

Two data sets concerning passenger flows (for both access and egress - Entry and Exit - from stations) are used 

and pertain to the week of April 9-15, 2018 (a scenario before the pandemic), together with one concerning the 

service. Specifically: 

1. Data from turnstiles (“Turnstiled”), aggregated by one hour,  

2. Data from tickets (“Fared”), giving the time (in minutes) the ticket was detected entering and exiting; 

3. The timetable for every scheduled train. 

2.3. The assignment procedure 

An assignment procedure is used to determine the flow on edges and passengers on trains. A station's schematic 
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layout is depicted in Fig. 2. We made the assumption that no journeys lasted more than an hour. The study of fared 

data and the several trials conducted revealed that this assumption is generally true, up to some scattered case. As 

shown in Fig. 3, we must thus assign two hours of demand in order to create a full simulation of one hour. 

Additionally, it's important to remember that every line is processed simultaneously. 

The entire process is predicated on the idea that every subject works as efficiently as possible: trains are 

consistently on schedule, and every passenger gets to the tracks and back in the given time. Because of this, it's 

possible that passenger arrival times will be earlier than actual ones. A description of the functions developed for 

these tasks is shown in Fig. 3. 

 Fig. 2: Schematic representation of passenger flows at a station node. 

 

Fig. 3: Warm-up, assignment, and balance intervals in the assignment procedure. 

 
Fig. 4 Meta-language program of the assignment procedure. 

for each station 

 calculate access time to track 

 extract entry data from Turnstiled dataset (one hour aggregated) 

 apply REBO6 programme to get 1 minute data 

 select OD matrices for the two hours of assignment 

 for each minute (1:120 [warms up and simulated intervals]) 

  distribute 1minute demand to destinations through a Monte Carlo routine 

  for each destination 

   calculate egress time 

   extract the best route and the list of stations belonging to it 

   for each route find the segments between stations 

    calculate the earliest departure time 

    find the first useful train 

    calculate the travel time (and transfer times, if any) 

    update the destination matrix (it is function of time) 

    load each segment with the assigned demand (according to the travel time) 

    update the train’s load 

   end 

  end 

 end 

entering flow 

exiting flow 

on-segment flow 

station station 

turnstile

turnstile

on-segment flow 

|----------1h-----------|---------2h---------|----------3h-------| 

|-----warm up-------|----simulated-----|---for balance---| 

|-----assignment----|----assignment----| 
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2.4. The REBO6 programme 

For each station and day of the week, the turnstiled data consists of hourly data of entries or egresses. The idea 

behind REBO6 programme is that entries every 10 minutes can be obtained from entries every 60 minutes as the 

result of three different processes: (a) 67.5% of the entries are uniformly distributed every 10 minutes; (b) 22.5% of 

the entries are allocated to the 10 minute slots through a random probability modelled according to the total number 

of entries during the hour before and next the current hour; (c) 10% of the entries are allocated to the 10 minute slots 

according to a completely random probability vector. The percentages have been chosen to be in good alignment 

with fared entries. 

  

  
Fig. 5: Synoptic view of flow analysis by minute, at time 9:01 and 9:02. 

 

 
Fig. 6: Train load over time: effect of train (number 88). Cancellation 

 

 
Fig. 8: Flows over one hour by steps of one minute on the two ways of the segments from 9:00 to 10:00 a.m. 
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3. Results 

The assignment process enables us to analyse every simulation result. Results are shown in two different ways: 

graphically and through tables and statistics. 

Initially, a synoptic graphic shows three subplots, each of which has the Milan graph that shows the incoming 

flow, the outgoing flow by node, and the flow on the edges. The synoptic charts are updated based on the results, 

which can be generated at intervals of one to sixty minutes (Fig. 5 shows an example of two successive frames at 

one minute). Second, the train load is shown graphically along with the segment load variation over time, departure 

flows, and entering flows (Fig. 6). 

Thirdly, during the course of an hour, a 3D figure (Fig. 7) shows the load for each part for the left and right way 

of circulation. 

4. Conclusions  

This study proposes a system for gradually selecting stations and trains in an underground network for which the 

effects of a disruption would be more significant. The main focus of contributions to transportation planning is the 

understanding of the train load factor for each segment per time interval with a minimum of one minute, followed by 

the train schedule improvements. We concentrated on underground networks since they provide us with all the 

information available regarding passenger flows, but their application to other transportation systems is unrestricted. 

The same justification, however, pertaining to data availability applies to the Milan instance. Of course, the format 

of the data may affect how they are pre-processed.  

With a time resolution of 1 to 30 minutes, the methodology is based on a dynamic approach that considers the 

change in demand (ridership) over time. To replicate the assignment procedure and recover the four demand 

components, entry and exit from the stations, segment load, and train load, specific programs are put into place. It is 

important to note that required evaluation approaches, e.g. using statistical indicators like mean or variance, are not 

particularly appropriate for this type of analysis because they tend to filter out singular phenomena, like a peak in 

passengers, which are essential for our goals and must be disclosed. 

A variety of aggregation times were used to test the effects of passenger flows in an underground network. 

Although they are connected, each of them provides distinct information. So, it is crucial to understand what it 

means to assume a specific period for data aggregation. This problem is also addressed in the study by examining 

the composition and temporal development of passenger flows, including those that indicate the load on segments 

and on-train, and those that arrive and exit the stations. In terms of their dynamics, these four passenger flows 

represent unique processes, and the suggested method demonstrated the ability to evaluate them. 

Implications for planning concern mainly the use of the overall methodology to simulate, and then to study how, 

by changing the train’s scheduled service, the train passenger load changes. This has two fallouts: first, the 

passenger flow at stations and platforms can be controlled and dimensioned opportunely; second, the relevance of 

stations can be distributed homogeneously among stations avoiding or mitigating critical concentrations only in a 

few stations. 

Future research will address: 

• Improving the assignment procedure with other models to create the percentage OD matrix; 

• Considering the train schedule times and the passenger times (from turnstile to the platform and vice versa, 

and transfer times) stochastic; 

• Taking into account saturation of train vehicles (though no cases were observed in the Milan underground 

system), this features would make the procedure still more general. 
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1 Introduction

In response to the rapidly evolving challenges of urban environments, there is a growing necessity to
enhance traditional Origin-Destination Matrices Estimation (ODME) models with data sources that
provide broader and more comprehensive insights (Cantelmo et al., 2014). Traditional fixed-location
data collection tools, foundational in developing reliable traffic metrics, often fall short of capturing
the complex nature of travel demand (Carrese et al., 2017). Crowdsourced data, which includes mobile
phone data, GPS-based data, and social media analytics, offers valuable avenues for obtaining high-
resolution information that accurately reflects urban travel patterns. Particularly, the integration of
location-based crowdsourced data into ODME models can significantly enhance our understanding of
the activities and purposes of travelers’ trips (Timokhin et al., 2020).

Previous research (Castiglione et al., 2024) delved into the motivations behind individual trips, as-
sessing how travel flexibility is influenced by the type of activities performed at destinations, utilizing
sources such as Floating Car Data (FCD) and Google Popular Times (GPT). These studies revealed
that flexibility parameters vary across different activities and over time, providing detailed insights into
spatio-temporal flexibility for various components of travel demand, such as rigid or flexible demand
components. Specifically, six demand components C were identified, each characterized by distinct
levels of temporal and spatial flexibility, and represented through a series of sample OD matrices
derived from the aggregation of FCD trips based on their spatio-temporal flexibility. This body of
evidence underscores the critical importance of integrating crowd-sourced data into the framework of
established dynamic ODME models like the Generalised Least Squares (GLS) model (Cascetta et al.,
1993), enhancing their accuracy in modern urban settings.

This paper introduces the Flex-GLS approach, a novel adaptation of the GLS model designed to in-
corporate multiple demand components characterized by detailed spatio-temporal flexibility metrics
derived from real-world, crowdsourced data. The Flex-GLS model utilizes a dynamic traffic assign-
ment to efficiently allocate these identified demand components across the network, reflecting realistic
traffic conditions and optimizing route choices in real time. This approach aims to more accurately
depict travel demand by blending temporal and spatial flexibility measures, thereby more effectively
capturing the complex dynamics of urban travel. The practical implementation of the Flex-GLS model
is exemplified through a case study in the EUR district of Rome, Italy, utilizing an extensive FCD
dataset that recorded over 1.5 million trips between September and December 2020.

2 Methodology

Temporal Flexibility (TF) and Spatial Flexibility (SF) define an individual’s ability to adjust the timing
and locations of their activities, respectively. In this context, the traditional GLS model is extended to
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encompass multiple demand components C, each characterized by its unique spatio-temporal flexibility
distribution σC . Given nt,C sample OD matrices, where each cell represents trips from an origin O to a
destination D within a time interval t for a travel demand component C, derived from the aggregation
of crowd-sourced data based on shared spatio-temporal flexibility, as detailed in Castiglione et al.
(2024), the modified GLS objective function is provided as follows:

d∗ = argmin
d

(∑
t

(∑
l

wl · (vl(d)− v̂l)
2 +

∑
od

∑
C

wC · (dod,C − d̂od,C)
2

))
(1)

Here, vl(d) denotes simulated traffic flows from a certain demand matrix d, against observed traffic
counts v̂l. d∗ represents the estimated matrix that minimises the discrepancy between simulated and
observed flows. Any generic demand matrix d can then be segmented into C components where dod,C
indicates the demand for each OD pair per component, while d̂od,C is the seed matrix for each demand
component obtained from the classified FCD in Castiglione et al. (2024). The weights wl and wC are
assigned based on the inverse of traffic counts and demand component variances, respectively. Incor-
porating multiple demand components, while straightforward conceptually, significantly complicates
the estimation process, especially for large urban networks. The Flex-GLS model, however, addresses
this complexity by using conditional probabilities to treat demand components as one composite OD
variable, ensuring computational efficiency. Demand components are thus defined as:{

dC,t,od = pC(t)× dt,od

pC(t) =
dC,t∑
t dC,t

(2)

Where pC(t) is obtained from the classified FCD sample OD matrices. The Flex-GLS model utilizes
a gradient descent algorithm to estimate the demand for each OD pair and time interval t. At every
gradient descent step, the model dynamically assigns the overall demand onto the network, and then
refines the individual demand components through a constrained Maximum Likelihood Estimation
(MLE) problem, leveraging prior probabilities PC(t) and variances σ2

C based on seed FCD data.

The MLE constraints in the model aim to ensure data consistency, with Temporal and Spatial Flexi-
bility treated as complementary. Temporal constraints allow adjustments in demand component pro-
portions within a time interval t, while ensuring overall consistency across a temporal window T . This
is critical for accurately capturing variations in travel behavior, considering narrower time windows
for commuters versus broader windows for other, more flexible activities (e.g. shopping). Similarly,
Spatial Flexibility enables the redistribution of demand from one origin O to various destinations
within the same time interval, maintaining, however, the proportionality in demand components. The
spatio-temporal MLE problem constraints are thus formalized as:{∑

C PC(t) = 1 ∀t ∈ T, ∀od∑
t∈T

∑
d dC,t,od∑

t∈T
∑
d dt,od

≈
∑
t∈T

∑
d dC,t,od∑

t∈T
∑
d dt,od

∀C,∀t ∈ T, ∀d
(3)

3 Results

For benchmarking purposes, initial tests of the Flex-GLS model were conducted on a toy network
with one origin and two destinations to evaluate its performance across different scenarios of data
reliability. These preliminary tests explored various alignments and deviations of seed data from real
conditions, preparing for a more robust application. The findings inform strategic choices of modeling
approaches, advocating for the Flex-GLS when detailed component data is available and for standard
GLS in scenarios where data reliability may be compromised. This section presents the results from
applying the Flex-GLS model to a comprehensive case study of the EUR district in Rome, Italy. The
EUR district, encompassing 51 km² with 54 traffic zones (Figure 1[a]), provides a complex real-world
environment for testing the model’s effectiveness. Figure 1[b] shows the road network along with
the locations of 8 traffic count detectors, highlighting strategic points for data collection and traffic
monitoring.
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The primary data source for this analysis has been a FCD dataset, which includes 1.5 million car
trips recorded between September and December 2020 in the Metropolitan City of Rome. A subset
of 180,000 trips with destinations within the study area has been classified into ’Home’, ’Work’, and
’Other’ categories using rule-based, spatial clustering techniques to identify regular trip patterns. Ad-
ditionally, activity data was obtained from Google Popular Times for 752 Points of Interest (POI)
located within the study area, collected in December 2020. From this data, six demand components
were identified, each with its respective spatio-temporal flexibility distributions: Home, Work, Services
(MA1), Sustenance (MA2), Shopping (MA3), and Drop-Off/Pick-Up (DO-PU). These components
were analysed according to the procedure detailed in (Castiglione et al., 2024).

Figure 1: Case study: (a) Traffic Zones (b) Road Network and Detectors of the Eur district of Rome

For the real network tests, the dynamic traffic assignment simulator Dynasmart was employed to
obtain the traffic flows for each time interval, allowing for a detailed analysis of network dynamics
under various demand scenarios. Both the Flex-GLS and the standard GLS models were tested across
16 time intervals from 08:00 AM to 12:00 PM, with each interval lasting 15 minutes. Each of the
six components was evaluated over specific time windows to reflect varying temporal dynamics: a
time window T = 4 time intervals for ’Home’ and ’Work’; T = 8 time intervals for ’Services’ (MA1)
and ’Drop-Off/Pick-Up’ (DO-PU); and T = 16 time intervals for ’Sustenance’ (MA2) and ’Shopping’
(MA3).

The performance of both models in terms of RMSE is highlighted in two subsequent tables. Table
1 below presents the comparative results of both the Flex-GLS and standard GLS models from the
initial to the last iteration in terms of RMSE of demand estimation accuracy and link flow reproduction.
Following the initial comparison, Table 2 provides detailed performance results discretized into the six
demand components, highlighting their respective abilities to handle the spatio-temporal flexibility
inherent in each category.

Table 1: RMSE comparisons between Flex-GLS and GLS
models

RMSE GLS Flex-GLS

Detected Counts vs. Simulated Flows (Initial) 84.8 84.8

Detected Counts vs. Simulated Flows (Final) 33.0 25.3

Real vs. Seed Demand 19.1 19.1

Real vs. Estimated Demand 13.2 7.6

Table 2: Performance comparison
across demand components

RMSE GLS - Real Flex-GLS - Real
Home 4.3 3.5
Work 1.4 0.6
DO-PU 3.6 1.2
MA1 5.8 4.2
MA2 5.1 2.7
MA3 7.2 3.3
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4 Conclusions

This paper presents the Flex-GLS model, an enhancement to the traditional GLS framework for ODME,
demonstrating the significant potential of integrating crowd-sourced data. This study validates the
model in a real-world setting within the EUR district of Rome, Italy, employing crowd-sourced flex-
ibility data obtained from Floating Car Data and Google Popular times in previous research. The
Flex-GLS model successfully utilizes this data to estimate six distinct demand components — Home,
Work, Drop-Off/Pick-Up, Services (MA1), Sustenance (MA2), and Shopping (MA3), each character-
ized by unique spatio-temporal flexibility patterns. The results highlight the model’s capability to
outperform traditional GLS models by leveraging nuanced insights on the demand structure. This
approach not only enhances accuracy in estimating traffic flows but also adapts to the variability in-
herent in urban travel. Particularly in the EUR district, where traffic data coverage spans less than
1% of links, the Flex-GLS model demonstrates robustness in its estimates, even with minimal traffic
data. This feature is invaluable for extensive urban networks where comprehensive data collection
poses significant challenges.
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1. Introduction 

This paper focuses on understanding marginal congestion costs in more depth and the implications 

it has in practice. In transportation systems, marginal costs represent the additional impact caused 

by introducing one more traveler into the network. These costs can take various forms, such as 

increased travel times or higher emissions, and are often converted into monetary terms for 

consistency and comparison. Marginal congestion costs specifically refer to the additional travel 

time costs imposed on the system by an extra traveler, typically expressed in units of time. The 

term "social" reflects the impact on the entire system, including all affected travelers (Mayeres et 

al., 2005). 

Focusing on marginal costs, rather than solely on absolute costs, is gaining increasing attention in 

transportation research. While individual travelers typically consider only their own costs, 

marginal costs provide valuable insights into the broader traffic system. They highlight which 

routes impose the greatest additional cost on society per extra traveler, offering a clearer 

understanding of the current traffic state. This perspective also enables the identification of socially 

optimal routes—those with the lowest total marginal cost—and facilitates analysis of strategies to 

encourage travelers to adopt these routes for the benefit of the entire system (Gavanas et al., 2017; 

Krichene et al., 2018). 

First in section 2, the basic theoretical framework is discussed. In section 3, some more complexity 

is added before theoretical conclusions and implications to practice are discussed in section 4. In 

the full paper, a reflection is made on how marginal social congestions costs are calculated in 

practice (including static and dynamic traffic models) and how these calculations differs from 

theory. 

2. Theoretical Framework on Basic Cases 

In this framework, small extra delays in free flow conditions are neglected. Only when a queue 

appears, adding an extra traveler further increases the travel costs for all others passing through 

the bottleneck. The theoretical framework uses traffic flow theory, first order LWR models 

(Lighthill and Whitham, 1955; Richards, 1956). Let start by analyzing the most basic case, a single 

bottleneck with no other on-or offramps.  

Single Bottleneck 

As a simple example, assume the following scenario: a two lane road changes to a one lane road 

at location 𝑥0. The used fundamental diagram is given in Figure 1. The capacity for one lane is 𝑞1, 

which means that the capacity of the two lane segment is 𝑞2 = 2 ∗ 𝑞1. The demand intensity is 𝑞𝑎, 



with 𝑞1 < 𝑞𝑎 < 𝑞2 for the first hour and 𝑞𝑏, 𝑞𝑏 < 𝑞1 < 𝑞2 for the second hour. The scenario starts 

from an empty road. The XT-plot of this scenario is given in Figure 2.  

 

Figure 1 Fundamental Diagram for one and two lane road, with all relevant traffic states indicated 

Now an extra vehicle, illustrated as the dotted green line in the XT-plot, is added compared to the 

normal case. This means that for a very short time, the demand is 𝑞𝑎 + 1. This results in a short 

shockwave that is slightly sharper. The new boundary between the congestion and free flow state 

is illustrated in red. We denote 𝑇 as the remaining time of the bottleneck once the extra vehicle 

has passed through the bottleneck. 



 

Figure 2 XT-plot of the single bottleneck case, traffic states are indicated in bold, while shockwaves are shown in black 

Every person during this period 𝑇 is delayed with 
1

𝑞1
. The total amount of people still going through 

the bottleneck after the extra traveler is 𝑇 ∗ 𝑞1, leading to a total increased delay of 
1

𝑞1
∗ (𝑇 ∗ 𝑞1) =

𝑇. An analogue derivation can be made if the extra traveler would depart in the second hour.  

Dissolving Queue 

Imagine now a bottleneck as a result from an incident. For some time, one lane is blocked and thus 

the capacity is limited to 𝑞1. The road can use both lanes again at time 𝑡0. The demand now stays 

constant at 𝑞𝑎. The resulting XT-plot of this scenario can be seen in Figure 3. Again, an extra 

traveler is added, and the new boundaries between the different states are illustrated in red. We 

denote 𝑇1 and 𝑇2 as the time after the extra traveler passed the bottleneck that there is a queue with 

one lane or two lanes, respectively. This means that 𝑇 = 𝑇1 + 𝑇2. During a period of 𝑇1, 𝑇1 ∗ 𝑞1 

cars are being delayed with 
1

𝑞1
. During the period 𝑇2, 𝑇2 ∗ 𝑞2 cars are being delayed with 

1

𝑞2
. The 

total extra delay equals thus:  
1

𝑞1
 ∗ 𝑇1𝑞1 +

1

𝑞2
∗ 𝑇2𝑞2 = 𝑇1 + 𝑇2 = 𝑇. If the extra traveler would 

pass the bottleneck at the time the two lanes are opened again, the calculations become trivial and 

the marginal cost equals 𝑇2 = 𝑇. 



 

Figure 3 XT-plot of the dissolving queue case, traffic states are indicated in bold, while shockwaves are shown in black 

 

3. Increasing Complexity 

For simplicity, the extra complexity is only discussed on the single bottleneck case, caused by 

fluctuating demand. The same reasonings can be made on the dissolving queue case. 

An off-ramp before the bottleneck 

Let’s start by adding an off-ramp before the bottleneck. Now assume the extra traveler takes this 

exit, located at 𝑥1. The responding XT-plot is visualized in Figure 4. As can be seen by the figure, 

no extra delay is caused to other travelers. Intuitively, the following process is happening: first an 

extra traveler takes some place in the queue, pushing others backwards. Second, the extra traveler 

takes the exit, making room again. All cars after the extra traveler will reach the bottleneck at the 

same time compared to when there was no extra traveler. Therefore, there is no extra delay and no 

marginal congestion cost. 



 

Figure 4 XT-plot with an extra off-ramp before the bottleneck 

Multiple off-ramps before the bottleneck 

Now assume that there would have been multiple off-ramps before the bottleneck. For travelers 

going through the bottleneck, no extra delay is caused. However, some travelers that either also 

take that exit or an exit before can experience delay. To be precise, all cars in the little triangle, 

defined by the trajectory of the extra car (green dotted line), the new queue border (red line) and 

the shockwave when the car disappears (black line), are 
1

𝑞1
 later on the same x-position. If their 

exit would lie within this triangle, they experience extra delay. Once they passed the new 

shockwave, the delay is gone and they are at exactly the same time on each x-position. This triangle 

can be bigger or smaller, depending on the time the extra vehicle enters the system and also on the 

location of the off-ramp. However, the total extra delay is much lower than the extra delay caused 

by an extra traveler going through the bottleneck. 

 

Merging point in queue 

Assume now that the queue of the single bottleneck spills back to a merging point of two main 

roads. At the merging point, each road takes some priority. An extra traveler originating from the 

left road does not cause a delay on the travelers origination from the right road. The travelers from 

the right road will still take the same position in the queue once merged. However, the extra 

traveler originating from the left road causes a proportional larger delay to all other travelers 

originating from the left. This extra delay can be quantified as 
1

𝑞𝑐 ∗ 𝑃𝑙𝑒𝑓𝑡
, with 𝑞𝑐 the bottleneck 

capacity and 𝑃𝑙𝑒𝑓𝑡 the proportion of vehicles going through the bottleneck origination from the left 

road. If 𝑇 again represents the time until the end of the bottleneck since the extra traveler went 

through the bottleneck, then the total amount of travelers going through the bottleneck originating 



from the left road after the extra traveler is 𝑇 ∗ 𝑞𝑐 ∗ 𝑃𝑙𝑒𝑓𝑡 . Resulting in a total extra delay of 
1

𝑞𝑐∗𝑃𝑙𝑒𝑓𝑡
∗ 𝑇 ∗ 𝑞𝑐 ∗ 𝑃𝑙𝑒𝑓𝑡 = 𝑇. Again, the total extra delay or the marginal social congestion cost is 

𝑇. In this calculation, it is assumed that 𝑃𝑙𝑒𝑓𝑡  is constant. If this would not be the case, more 

complex calculations can be made, resulting in the same total extra delay of 𝑇. 

4. Theoretical Conclusion & Implications in Practice 

If the extra traveler goes through the bottleneck, the marginal social congestion cost is 𝑇, the 

remaining time the bottleneck is active once the extra traveler has gone through it. If the extra 

traveler goes not through the bottleneck, there can be marginal social congestion costs, but 

generally of a much lower magnitude. This implies that if marginal costs need to be allocated to 

links, the marginal social congestion cost is only non-zero at bottleneck locations. 

The magnitude of the marginal social congestion cost on these few links can be large. Many 

bottlenecks on highways remain active for multiple hours during the rush periods, with a value of 

time of around 20 euros (Small, 2012), the total marginal cost can be 60-100euro. This is much 

larger then any other marginal effect (noise, safety, …). When optimizing routes in a social 

perspective, this would give a free pass to avoid the bottleneck and e.g. take the off-ramp and route 

through the underlying network. 

The marginal social congestion costs on the underlying network is usually much lower, as the 

bottlenecks are typically not constant active. E.g. at signalized intersections it happens that the 

queue remains during multiple cycles, but if at one point the queue disappears completely, the 

marginal social cost is reset. 

In the full paper, more theoretical cases will be discussed, including the possibility of having 

negative marginal social costs by having an extra traveler. These insights will be compared to how 

currently marginal congestion costs are calculated, with static and dynamic models. Furthermore, 

the discussion with other marginal social costs and the implications of the difference in magnitude 

values will be further elaborated. 
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Transit route design based on trip-based agglomeration of travel
demand
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1 Introduction

The design of routes in transit networks is an important problem as it affects other aspects of
transit system design such as the setting of timetables, planning of crews, etc. (Vermeir et al.,
2021). Traditionally, this problem has been tackled considering road network data and transit
demand matrix as inputs (Chakroborty & Wivedi, 2002, Vermeir et al., 2021). Note that these
approaches require an origin-destination (OD) matrix representation of transit demand and thus
require the trip ends to be agglomerated towards the a priori decided zone centroids (and then to
the potential bus stops). However, a novel trip-based agglomeration (TBA) method proposed by
Kumar et al. (2024) represents each trip as an ordered pair of origin and destination in the form
of a line segment and these line segments are agglomerated to form corridors (note that each
corridor is a line segment whose length is dependent upon the endpoints of the agglomerated
trips). Kumar et al. (2024) showed that the proposed TBA method can identify major flow-
carrying corridors in a single step as opposed to multi-step post-processing that may arise in the
OD-based agglomeration (ODA) methods.

This paper proposes a novel method to design transit routes given the corridors obtained
from the TBA method. Since corridors are line segments that may not be aligned with the
underlying road network, it is required to determine a route on the underlying road network that
closely represents the given corridor while satisfying the following desirable conditions. One of
the conditions is that the determined route should pass through some of the important points
on the corridor such as the endpoints, points with high-demand activity, etc. Another condition
that the developed route should satisfy is that its length should be as small as possible. While
ensuring the above two conditions, it may happen that there may be many turns along the
determined route, and therefore the last condition is to keep the number of turns in the route
as low as possible. In order to ensure that all these conditions are met as much as possible, an
optimization problem is proposed to design the transit routes that maximizes the weighted sum
of the number of important points on corridor that are visited in the determined route minus
the length of the determined route minus the number of turns in the determined route.

A major difference between the proposed optimization problem and the studies that require
OD matrix representation of transit demand is that the latter studies benchmark their results on
small-scale networks like Mandl’s network with 15 nodes (Vermeir et al., 2021), Mumford network
with 127 nodes (Ahmed et al., 2019), etc., whereas in this work transit routes are designed for a
large-scale network with approximately 20, 000 nodes.

Note that the proposed optimization formulation has high-level analogies to the orienteering
problem (OP) (Vansteenwegen et al., 2011) but there are important differences also as explained
next. One of the versions of OP involves finding a route between two given points that maximizes
the number of points that are visited from a pre-determined set of points under the constraint
that the length of the determined route does not exceed a predetermined threshold. However, the
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proposed optimization problem considers the number of turns in the objective function because
the determined route is developed on a given road network where the angle of turns that are
made is important unlike that in OP. Furthermore, the length of the determined route is part
of the objective function in the proposed optimization formulation whereas there is a constraint
on the length of the determined route in OP. In the next section, the developed optimization
formulation is presented.

2 Problem Formulation

This section describes the proposed optimization formulation for developing transit routes. Let c
be a directed transit demand corridor as obtained from the TBA method of Kumar et al. (2024)
(note that a directed corridor is a directed line segment). The source and the target endpoints
of the given corridor c are denoted as o and d, respectively. Let G = (V,E) be a directed graph
representing the underlying road network. For all (i, j) ∈ E, let lij be the distance from node i
to node j. Suppose s ∈ V and t ∈ V represent the nodes closest to the source endpoint and the
target endpoint, respectively, of the given corridor c. The output of the proposed optimization
problem is a route that starts from node s and ends in node t while satisfying the conditions
described in the subsequent discussion. Let P be a given set of important points on corridor c
such as points with a high-demand activity (note that set P does not include the endpoints o
and d). Let Q ⊂ V be the set of nodes that are closest to the points in set P . Let H be the set of
all the pair of edges ((i, j), (j, k)) (such that (i, j) ∈ E, (j, k) ∈ E and i ̸= k) where a turn is said
to be present. Let wp and wt be the scaling factors for different terms in the objective function.
The target of the proposed optimization formulation is to determine a route connecting s to t
so that the sum of the number of nodes from set Q that lie in the determined route minus wp

times the length of the determined route minus wt times the number of turns in the determined
route is maximized. The proposed optimization formulation is given as follows.

Maximize

[ ∑
∀k∈Q

ρk

]
−

[
wp

∑
∀(i,j)∈E

xijlij

]
−

[
wt

∑
∀((i,j),(j,k))∈H

fijk

]
(1)

Subject to:

∑
∀j∈V \{s}

xsj = 1 (2)

∑
∀i∈V \{s}

xis = 0 (3)

∑
∀i∈V \{t}

xit = 1 (4)

∑
∀j∈V \{t}

xtj = 0 (5)

∑
∀i∈V \{t}

xik =
∑

∀j∈V \{s}

xkj ∀k ∈ V \{s, t} (6)

ρk ≤
∑

∀i∈V \{t}

xik ∀k ∈ Q (7)

fijk ≥ xij + xjk − 1 ∀((i, j), (j, k)) ∈ H (8)
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uj ≥ ui + xijn− n+ 1 ∀i, j ∈ V and i ̸= j (9)
ρk ∈ {0, 1} ∀k ∈ Q (10)
xij ∈ {0, 1} ∀(i, j) ∈ E (11)
fijk ∈ {0, 1} ∀((i, j), (j, k)) ∈ H (12)

The expression in Equation 1 presents the objective function as described before. Here, for
all k ∈ Q, ρk is equal to 1 if node k lies in the determined route, otherwise it is equal to 0. Also,
for all (i, j) ∈ E, xij is equal to 1 if the edge (i, j) lies in the determined route, otherwise it is
equal to 0. For all ((i, j), (j, k)) ∈ H, fijk is equal to 1 if the edges (i, j) and (j, k) lie in the
determined route, otherwise it is equal to 0. Thus, the first term from the left is the number
of nodes from set Q that lie in the determined route, the middle term is wp times the length of
the determined route and the last term is wt times the number of turns in the determined route.
Equation 2 ensures that only one edge that lies in the determined route leaves the source node s.
Equation 3 ensures that none of the edges that lie in the determined route enter the source node
s. Equation 4 ensures that only one edge that lies in the determined route enters the source node
t. Equation 5 ensures that none of the edges that lie in the determined route leave the source
node t. Equation 6 ensures that for each node k ∈ V \{s, t}, the number of incoming edges to
node k that lie in the determined route is equal to the number of outgoing edges from node k
in the determined route. The constraint in Equation 7 ensures that for all k ∈ Q, ρk is equal to
0 if there is no incoming edge to node k in the determined route. The constraint in Equation 8
ensures that for all ((i, j), (j, k)) ∈ H, fijk is equal to 1 if both the edges (i, j) and (j, k) lies
in the determined route. Equation 9 is a sub-tour elimination constraint that ensures no cycles
are formed in the determined route. Here, ui,∀i ∈ V are unrestricted decision variables used for
eliminating subtours in the determined route. Equations 10 to 12 are the definitional constraints
for the decision variables. Since some of the decision variables in the above formulation are
integers (except the variables ui,∀i ∈ V ), and the objective function and the constraints are
linear, the proposed optimization formulation is a Mixed Integer Linear Program (MILP).

3 Results and discussions

In this section, the proposed optimization formulation is applied on a given set of corridors to
determine the transit routes for a large-scale road network. A set of 40 corridors obtained by the
TBA method of Kumar et al. (2024) for Manhattan, New York City, and the underlying road
network for Manhattan (consisting of approximately 20, 000 nodes and 30, 000 directed edges
(Dataset 1, 2014)) are used as inputs for the proposed optimization formulation. Note that 40
corridors are taken as input as there are about 40 transit routes currently in Manhattan. The
optimization problem is solved1 for each corridor and this process is repeated 40 times to obtain
a set of 40 transit routes. Figure 1a shows the computed transit routes in red color. Note
that the average computation time required to determine each transit route is approximately 75
seconds. Figure 1b shows the existing transit routes in Manhattan (Dataset 2, 2020). It can be
seen that at a high-level, the obtained routes look similar to the current routes but there are
noticeable differences. That is because the determined transit routes are computed solely based
on the information on transit demand and the underlying road network whereas the existing
transit routes are designed based on other information as well such as site-specific constraints
that may not allow transit routes to pass through some specific locations, welfare policies that
may require providing routes at low demand areas, etc. Therefore, the proposed optimization
framework only provides an initial estimate of the transit routes that should be suitably modified
by the transit route planners to consider various practical constraints and government policies.
Note that the obtained transit routes are statistically compared with the existing transit routes

1The optimization problem is solved using a competitive solver for MILPs (Manual, 1987) and codes are run
on a 64-bit Windows operating system with 32GB RAM and an Intel i7-3770 processor.
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in Manhattan using the Kolmogorov–Smirnov test to check similarity in terms of aspects such as
length, orientation, etc. It is found that the obtained routes are not significantly different from
the current routes statistically. These results are not presented here for brevity but interested
readers can refer to Supplementary material 1 (2024). In summary, this work provides a novel
way to efficiently generate transit routes based on the demand corridors obtained from the TBA
method of Kumar et al. (2024). An important contribution of this work is that it considers
the information regarding large-scale road networks while designing transit routes in contrast to
existing studies that test their results on smaller networks.

(a) (b)

Figure 1 – The left figure shows the transit routes as obtained from the proposed formulation and
the right figure shows the existing transit routes in Manhattan, New York City.

The present work can be extended as follows. In this paper, only the development of transit
routes was focused on, but developing schedules for running transit on such routes would be an
important step. The corridors that were taken as input for developing transit routes were assumed
to be fixed but different set of corridors can be generated from the TBA method of Kumar et al.
(2024) as the proposed algorithms in Kumar et al. (2024) are stochastic and thus considering
stochasticity in the distribution of corridors while developing transit routes would also be very
interesting. Finally, the information of other criteria such as area served by the transit routes,
length of the transit routes, etc., can be incorporated in the proposed optimization formulation
while developing the transit routes.
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ABSTRACT

The increasing complexity of urban traffic networks makes monitoring individual links challenging, limiting the effective-1

ness of traditional dynamic traffic assignment (DTA) methods. The macroscopic fundamental diagram (MFD) provides a2

powerful tool for managing urban traffic at a network level. However, existing MFD-based DTA frameworks do not fully ex-3

plore the inseparable coupling among uncertainties in trip lengths, speed-density MFDs, and route choices, all of which4

jointly influence macroscopic traffic dynamics. To address this gap, we propose a new formulation of probabilistic dynamic5

traffic assignment using the generalized bathtub model, which explicitly accounts for stochasticity in trip length distribu-6

tions, speed-density MFDs, and route choice behaviors. In the model formulation, instead of aggregate path flow data, we7

use a detailed hierarchy of flow data, including path-specific inflow and outflow data, and other probe vehicle-related data.8

We define a random utility function to assess how these uncertainties impact route choices, and develop a data-driven in-9

ference algorithm to solve stochastic dynamic user equilibrium. Under the equilibrium condition, it is able to simultane-10

ously derive the approximate distributions of trip lengths, MFD parameters, and multinomial logit route choice coefficients.11

Numerical experiments are conducted on synthetic data on a simulation network and realistic taxi trajectory data in Futian12

district of Shenzhen. The experiment results validate the effectiveness and accuracy of our proposed inference algorithm.13

INTRODUCTION14

The aggregate capacity of a region in a network, represented by the macroscopic fundamental diagram (MFD), is initially proved by15

Daganzo (2007) and Geroliminis and Daganzo (2008), and later confirmed in other cities (Ambühl and Menendez, 2016; Geroli-16

minis and Sun, 2011; Loder et al., 2017). An MFD describes the aggregate relationship between average flow q (vehicles/second)17

and the accumulation n (vehicles) inside a region, and is instrumental for downstream tasks including perimeter control (Geroli-18

minis et al., 2012; Guo and Ban, 2020; Zhong et al., 2018) and road pricing (Simoni et al., 2015; Zheng et al., 2012). Many studies19

have employed loop detector data to estimate an MFD either in real or simulated settings (Geroliminis and Daganzo, 2008; Keyvan-20

Ekbatani et al., 2013; Leclercq et al., 2014); however, as loop detectors are fixed-point measurement devices, the estimated MFDs21

may be biased and can not reflect the aggregate traffic dynamics. Taking advantage of communication technologies, recent efforts22

use probe vehicles to overcome the limitations of loop detectors (Ambühl and Menendez, 2016; Saffari et al., 2022). Traffic flow in23

reality is far more complicated than deterministic and homogeneous fluid flow governed by physical laws. Therefore, it is necessary24

to estimate a stochastic MFD based on probe vehicle trajectories, taking into account the heterogeneity in vehicles and road geom-25

etry inside each region.26

In the current literature, the studies of dynamic traffic assignment (DTA) combined with regional networks and MFD-based mod-27

els are not extensive. Initial efforts focus on simple networks with few origin-destination pairs or non-overlapping paths (Laval et al.,28

2017; Leclercq and Geroliminis, 2013). Yildirimoglu and Geroliminis (2014) proposed the first DTA framework for multi-regional29

MFD-based models but did not discuss the distributions of trip lengths; Batista and Leclercq (2019) examined perceived errors in30

both speed and trip lengths, and solved network equilibrium by Monte Carlo simulations. Batista et al. (2019, 2018); Paipuri et al.31

(2020) investigated the estimation of regional trip lengths with a hierarchy of network information, including previous region, next32

region, path. Overall, they only provide deterministic point-valued estimates of regional trip lengths; in the case of macroscopic traf-33

fic modeling, trip length in each region is stochastic and might take a wider range of values, reflecting the truth that a region is com-34

posed of numerous links.35

In dynamic traffic assignment (DTA), the path length distributions and temporal evolution of speed inside different regions influ-36

ence path travel times and further influence how trips are distributed in a regional network. The generalized bathtub model (GBM)37



(Jin, 2020; Vickrey, 2019, 2020), coupled with the MFD, is a suitable macroscopic framework to model the traffic dynamics result-38

ing from travelersŕoute choice behaviors. The GBM draws an analogy between water flow in a bathtub and vehicular flow in a ho-39

mogeneous region, and assumes that speed is only dependent on the vehicular density inside a region. In this paper, based on40

prove vehicle trajectories, we propose an MFD-based stochastic dynamic traffic assignment model that is able to:41

• Estimate the posterior distributions of coefficients in a random utility model to quantify the randomness in travelers’ route42

choices43

• Derive the approximate trip length distribution in each region44

• Infer the posterior distributions of parameters in the functional form of the MFD to quantify the uncertainty in speed-density45

relationship in each region46

METHODOLOGY47

In this section, we start by presenting the hierarchy of variables whose interactions lead to path flow and speed observations based48

onmacroscopic fundamental diagrams (MFDs) in Table 1.49

Description

Symbols
Ω set of origin-destination (OD) pairs
Rω set of regional paths connecting OD pair ω
U t
rω

utility of route rω at time t
ϵrω error term in the utility of rω
B set of bathtubs (regions)
∆ω path-region incidence matrix of size |Rω | × |B| for OD pair ω
Grω |B| × |B| subgraphmatrix of path rω indicating the order of traffic flow over the bathtubs, i.e., Grω (i, j) = 1 if bathtub

i immediately follows bathtub j on path rω and 0 otherwise
I the identity matrix

Latent variables and parameters
drω,j travel distance in bathtub j on path rω
λrω,j parameter for the exponentially distributed drω,j

λrω a length-|B| vector of λrω,j

vj0 free flow speed in bathtub j

djjam jam density in bathtub j

θω vector of logit coefficients for OD pair ω

Observations
Qt

ω travel demand for OD pair ω at time t, unit: veh(s)
F t
rω,enter number of vehicles selecting path rω at time t

F t
rω,j,enter number of vehicles selecting path rω and entering bathtub j at time t, i.e., F t

rω,j,enter = F t
rω,enter if bathtub j is the

origin of OD pair ω
Ft

rω,enter a length-|B| vector of F t
rω,j,enter

F t
rω,j,exit number of exit vehicles from bathtub j on path rω at time t

Ft
rω,exit a length-|B| vector of F t

rω,j,exit
Nt

j number of total vehicles inside bathtub j at time t

Nt a length-|B| vector of Nt
j

Nt
rω,j number of total vehicles on path rω inside bathtub j at time t

Nt
rω

a length-|B| vector of Nt
rω,j

v̄tj average speed over Nt
j probe vehicles inside bathtub j at time t

Table 1: Notation summary.

Traffic dynamics in Regional DTA50

A core question in dynamic traffic assignment (DTA) is how to replicate the travelers’ route choice behaviors. The first principle of51

Wardrop (Wardrop, 1952) gives rise to the theoretical framework which describes the selfish behaviors of drivers to minimize their52

own travel times. The deterministic user equilibrium assumes that all drivers are rational and well-informed about possible routes53

and their travel times. A more realistic assumption is that drivers evaluate route choices, and trips are distributed, according to the54

perceived utility U t
rω
:55



U t
rω = θω,1TTDrω + θω,2TTTtrω + ϵrω , ∀rω ∈ Rω , ∀ω ∈ Ω, (1)

where TTD denotes total travel distance, TTT denotes total travel time, and ϵ accounts for the uncertainty specifically related to route/path56

rω . θω,2 is the value of time as in Lu et al. (2008); Zhang et al. (2013). Equation 1 represents the stochastic extension of user equilib-57

rium (SUE), where no single traveler has incentives to improve perceived utility by switching to another route (Daganzo, 1982; Da-58

ganzo and Sheffi, 1977).59

The number F t
rω,enter of observed probe vehicles selecting path rω at time t is the result of route decision making, in which route60

choices follow a multinomial logit (MNL) model (Dial, 1971), where ϵrω is independently and identically Gumbel distributed. Some61

might criticize that MNL fails to capture the correlations between overlapping routes; since the number of regions is significantly62

smaller than that of links, we assume that the severity of this fault is reduced in macroscopic traffic dynamics. In this study, we ex-63

plore how expected path total travel distance (TTD) and total travel time (TTT) would influence the likelihood of instantaneously choos-64

ing a route rω at time t:65

TTDrω = ∆rω,:
1

λrω

TTTtrω = ∆rω,:(
1

vt
◦

1

λrω

)

θω ∼ MVN(µθω
,Σθω )

ptrω =
exp(θT

ω [TTDrω , TTTtrω ])∑
k∈Rω

exp(θT
ω [TTDk, TTTtk])

F t
1,enter, ..., F

t
|Rω|,enter ∼ Multinomial(Qt

ω ; p
t
1, ..., p

t
|Rω|),

(2)

where∆rω,: is the row of path-region incidence matrix∆ω corresponding to path rω ; 1
λrω

is the vector of inverses of λrω,j ’s, which is66

the vector of expected travel distances in bathtubs on path rω ; vt is the speed vector obtained from bathtub MFDs; ptrω is the proba-67

bility of choosing path rω at time t.68

The observed speed v̄tj of probe vehicles in bathtub j at time t follows69

vj0, d
j
jam ∼ MVN(µj ,σ

2
j )

vtj = MFDj(N
t
j ; v

j
0, d

j
jam)

v̄tj ∼ Normal(vtj , σ
2
MFDj

),

(3)

where Nt
j denotes the number of total vehicles in bathtub j at time t and σ2

MFDj
is the measurement error for individual vehicle70

speed in bathtub j.71

The probability ptrω,j of a probe vehicle exiting bathtub j on path rω at time t is dependent on the average speed in bathtub j and72

exponentially distributed path-specific regional travel distance drω,j . For an exponentially distributed random variable dwith pa-73

rameter λ, the probability of d being smaller than a threshold t is given by p(d ≤ t) = 1 − e−λt . We further assume that the vehicles74

taking path rω exit bathtub j are independent and follow identical Bernoulli distribution. Given an exponentially distributed travel75

distance drω,j with parameter λrω,j , we have:76



ptrω,j = 1− e−λrω,j∆tv
t
j

F t
rω,j,exit ∼ Binomial(Nt

rω,j , p
t
rω,j).

(4)

We assume that traffic dynamics abide the law of flow conservation among bathtubs (regions), represented as follows:77

Nt =
∑
ω∈Ω

∑
rω∈Rω

Nt
rω

Nt
rω

= Nt−1
rω

+ Ft
rω,enter + (Grω − I)Ft−1

rω,exit.

(5)

Solution algorithm of regional DTA78

Our objective is to solve the stochastic dynamic traffic equilibrium in a regional network, in terms of the parameters of trip length79

distributions and posterior distributions of MFD and MNL parameters. In other words, we want to find drω,j ∼ exponential(λrω,j),80

θω ∼ MVN(µθω
,Σθω ), v

j
0, d

j
jam ∼ MVN(µj ,σ

2
j ) so that81

F t
1,enter, ..., F

t
|Rω|,enter ∼ Multinomial(Qt

ω ; p
t
1, ..., p

t
|Rω|)

ptrω = P (U t
rω
≤ U t

k)

∀k ̸= rω ∈ Rω , ∀ω ∈ Ω.

(6)

It is difficult to directly derive posterior distributions of latent variables in complex systems involving both spatial and temporal inter-82

actions; hence, we resort to stochastic variational inference (SVI )for scalable approximate inference (Hoffman et al., 2013; Kingma,83

2013; Ranganath et al., 2014; Wingate andWeber, 2013). In SVI, the objective function to minimize the following function:84

π(Ψ) = −
1

N

∑
i=1

[log(pΦ(X|Zi)pΦ(Zi))− log qΨ(Zi)], (7)

whereX denotes observed variables, Z denote latent variables, Ψ represents the parameters of approximate posterior distribu-85

tions. Minimizing π(Ψ) implicitly minimizes the KL-divergence KL(qΨ(Z)∥pΦ(Z|X)). In each iteration k, the relative gap is defined86

as π(Ψk)−π(Ψk−1)

π(Ψk)
, and we consider that the network is in equilibrium if gap ≤ tol, where tol is predefined tolerance. Algorithm 187

summarizes the SVI solution of MFD-based stochastic DTA.88

RESULTS89

A toy network with known MFD parameters90

In this subsection, we examine the inference performance of our proposed modeling framework in a simulated bathtub network91

with a single OD pair and two connecting paths. The model is tested on a simplified setting where a subset of variables are fixed92

and known, instead of being latent, since speed information is not observable in the simulation.93

Basic information of the components in the simulation is displayed in the following Figure 1. The prescribed paths connecting the94

designated OD pair are P1 = (1, 2, 4) and P2 = (1, 3, 4) in Figure 1A, respectively. The deterministic demand pattern Qt in Figure 1B95

is exogenously determined to mimic the traffic dynamics in morning peak hours, and the vehicles are only allowed to enter the net-96

work via bathtub 1. In the simulation setting, the ground truth average speed-density bathtub-wide MFD (Figure 1C) is assumed to97

be publicly accessible to help drivers’ route decision making. In this hypothetical environment, we are able to record the trajectory98



Algorithm 1 Stochastic Variational Inference for MFD-Based Stochastic Dynamic Traffic Assignment

1: Input the OD pair set Ω, route choice set Rω , path-region incidence matrix∆ω , directed flowmatrix Grω , ∀rω ∈ Rω , ∀ω ∈ Ω
2: Input the travel demand Qt

ω , ∀ω ∈ Ω, and the duration T
3: initialize k = 1, tol, maximum number of iterations Nmax , learning rate α
4: while gap ≥ tol and k ≤ Nmax do
5: Sample MNL coefficients θω ∼ MVN(µθω

,Σθω ) and MFD parameters vj0, d
j
jam ∼ MVN(µj ,σ

2
j ) from approximate posteriors

6: for i = 1, 2, . . . , T do
7: if i = 1 then
8: Set perceived speed inside bathtub j equal to free flow speed vj0
9: else

10: Calculate the perceived speed inside bathtub j based on MFDj and Nt−1
j

11: end if
12: Calculate MNL-based path inflow F t

rω,enter by Eq 2 and calculate the likelihood Multinomial(F t
1,enter, ..., F

t
|Rω|,enter|Q

t
ω ; p

t
1, ..., p

t
|Rω|)

13: CalculateNt andNt
rω

by Eq 5 based on observationsNt
rω
, Ft

rω,enter , F
t−1
rω,exit

14: Calculate the likelihood of MFD speed observation Normal(v̄tj |MFDj(N
t
j ; v

j
0, d

j
jam), σ2

MFDj
) by Eq 3

15: Given the speed, calculate the likelihood of path region outflow Binomial(F t
rω,j,exit|N

t
rω,j , p

t
rω,j) by Eq 4

16: θold ← θ
17: end for
18: Collect all the likelihoods and compute πk and gap
19: Ψ← Ψ− αη, where η is the gradient of πk with respect to Ψ
20: k ← k + 1
21: end while

A Toy network with a single OD pair and two paths B Simulation demand pattern C Bathtub-level speed-density MFD

Figure 1: Essential components in the simulation of a single-OD toy network.

of each trip; therefore, our observed data consist of time-dependent path inflows F t
i,enter and path-specific time-dependent bath-99

tub outflows F t
i,exit , where time index t ∈ {1, ..., T} and path index i ∈ {1, 2}.100

In the simplified setting, route choice behaviors are replicated by presuming unknown fixed values (−0.5,−2.5) for θ1 and θ2 . There-101

fore, the goal is to infer the approximate posterior distributions of multinomial logit coefficients θ and unknown exponential pa-102

rameters λ’s. In Figure 2A and Figure 2B, the resulting posterior probability density functions for θ1 and θ2 are plotted. While the103

ground truth values for θ are marked by red vertical dashed lines, it is easy to observe that the modes of normal posteriors match104

the ground truth values closely. The measurements of variance of MNL coefficients are also negligible by the spike-shaped PDFs.105

Figure 2C also provides the comparison between accurately estimated and ground truth values of λ’s for the exponentially distributed106

distances.107

A real urban network with stochastic MFDs108

To evaluate the proposed stochatsic DTA inference framework in a real urban network, we divide the Futian District, Shenzhen into109

hexagonal regions by h3-py (Uber, 2018) in Figure 3A. To aggregate OD demand data and observed route choices, we use taxi GPS110

data, which contain time, longitude, latitude, and occupancy status so that we could track the movement of each OD trip as a se-111

quence of hexagonal regions (Zhang et al., 2015). As preliminary results, the estimated regional MFDs are presented in Figure 3B,112

each indexed by the Uber h3 hexagon id. Each solid line represents the average speed-density relationship in the region; by repeat-113

edly sampling from approximate posteriors of MFD parameters, we are able to quantity the uncertainty in MFD relationship. It is ob-114

served that the corresponding proportions of speed observations fall between the confidence intervals whose endpoints are empir-115

ical percentiles of the MFD samples.116



A Posterior PDF of θ1 B Posterior PDF of θ2 C Ground truth and estimated values of λ’s

Figure 2: Inference results for MNL coefficients and exponentially distributed distance parameters for the simulation environment.

A Decomposition of Futian District, Shenzhen into
hexagonal regions B Estimated MFDs and corresponding confidence intervals for a subset of regions indexed by Uber h3 hex id

Figure 3: Inferred stochastic speed-density MFDs based on taxi trajectories in Futian District, Shenzhen.
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Abstract

As ride-hailing services continue to grow in popularity, they contribute to escalating congestion in traffic networks.
This paper proposes a publicly-owned centralized platform (POCP) for shared automated vehicles (SAVs) that
connects travelers, traffic network companies (TNCs), and parking spaces. It provides a novel insight for the
regulation of government to save social costs by adjusting travelers’ behaviors with spatial-temporal trip subsidies.
In the proposed POCP, (i) government operates this centralized platform with the objective of minimizing social
cost, collecting and distributing necessary information (i.e., trip orders, trip fees, discounts, parking vacancies) to
corresponding users; (ii) travelers request and pay the trip order in the centralized platform and their trip order
choices may be associated with the trip fee and discount; (iii) TNCs receive trip orders from the platform and
provide mobility services by routing SAVs to maximize the profit. We formulate the operation of POCP as a bi-
level programming, where the government aims at minimizing the social cost by providing travelers with spatial-
temporal discounts in the upper-level problem, and TNC aims at maximizing the profit given travel demand from
the upper level as a dynamic traffic assignment (DTA) in lower level problem. We prove that the proposed bi-
level programming could be equivalently decomposed into two sub-problems with linear programming to solve
for the minimum social cost and minimum subsidy amount, respectively. To validate our proposed model and
solution algorithms, we conducted numerical experiments in both small and real-world large networks. The results
reveal substantial savings in social costs, equivalent to 110.38% of the subsidies spent in the small network and
121.96% in the large network. These findings underscore the efficacy of the proposed POCP model, emphasizing
the potential of spatial-temporal subsidies in reducing traffic congestion and improving social welfare.

Keywords: Ride-Hailing Platform, System Optimal Dynamic Traffic Assignment (SO-DTA), Shared Automated
Vehicles (SAVs), Bi-level Optimization

1. Introduction

This paper proposes a novel insight to improve the current ride-hailing platform and save social welfare in
dynamic traffic networks from the government’s perspective and designs a publicly-owned centralized platform
(POCP). We formulate the operation of the POCP as a nonlinear bi-level programming where the government aims
at minimizing the social cost by adjusting travelers’ behaviors with the spatial-temporal discount in the upper level
and TNC aims at maximizing its profit by providing mobility service of SAVs in the lower level. The bi-level
problem can be decomposed by two sub-problems, where the first sub-problem could be solved by a series of LPs
and the second sub-problem is a LP. Therefore, the solution process becomes tractable for large-scale networks
and numerical experiments demonstrate the great potential of the design of POCP.

The contributions of this study are summarized as follows:

• This research proposes a design for a publicly-owned centralized platform (POCP) for shared automated
vehicles (SAVs), which serves as an intermediary connecting travelers, and TNCs. The platform, operated by
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the government, aims to reduce social costs by subsidizing trips via spatial-temporal discounts. Conversely,
TNCs focus on providing mobility services to travelers by optimally routing SAVs to maximize their profit.

• The study formulates a SO-DTA problem for the POCP as non-linear bi-level programming. This model
incorporates both traveler and vehicle flows to capture network-wide traffic dynamics.

• We demonstrate that the proposed non-linear bi-level programming of POCP could be equivalently converted
into two sub-problems with linear programming (LPs) to solve for the minimum social cost and minimum
subsidy amount, respectively. The first LP could be obtained by the branch and bound algorithm. It provides
us with a direct and efficient way to obtain the spatial-temporal subsidy to save the social cost using the
minimum subsidy amount.

2. Problem Settings

The POCP acts as an intermediary to connect travelers and TNCs. We would illustrate the roles of each
stakeholder for POCP as follows.

The government operates the platform to minimize the social cost and offers spatial-temporal subsidies to
travelers by providing discounts on trip fees in the POCP. These discounts are dependent on the destination, time
of orders, and the type of SAVs.

Travelers, who are informed about the trip fees set by TNC and the discount set by the government in POCP,
place trip orders on the platform. They pay the actual trip fare to the platform, which equals the trip fee multiplied
by the discount. Additionally, travelers exhibit the following characteristics:

• Sensitivity to subsidies varies among travelers. Travel demand can be divided into regular demand and
flexible demand. Regular demand pertains to travelers who would request an order at a specific time (denoted
as r) regardless of the discounts. On the other hand, flexible demand is sensitive to discounts, and their
requesting time may change due to varying travel costs at different time

• Travelers have the option to utilize ride-sharing services and are divided into two groups: solo travelers and
ride-sharing travelers. Solo travelers, who prefer not to use ride-sharing services, are the only occupants of
a Shared Automated Vehicle (SAV). Ride-sharing travelers, on the other hand, opt for ride-sharing services.
Accordingly, the type of SAV is defined as follows:

– x = 0 represents an idle SAV.
– x = −1 represents an SAV with a solo traveler (e.g., UberX).
– x = 1, · · · , X represents an SAV with x ride-sharing travelers (e.g., UberPool), where X is the maximum

number of travelers in a SAV.

TNCs are alerted by the platform when travelers place orders, and they then provide mobility services by
routing SAVs. The platform pays TNCs the total trip fees, which comprise the fares travelers pay and the subsidy
offered by the government. Furthermore, the platform shares parking vacancy information with the TNCs for SAV
parking selection, and TNCs remit parking fees to the platform.

3. Model

We use the Double Queue (DQ) model to present the dynamic network loading process. The dynamics of
the DQ model are captured by the two dependent queues: the downstream queue and the upstream queue. The
downstream and upstream queue of SAVs is presented in Equation 1 and 2 for (i, j) ∈ E, x = −1, 0, 1, · · · , X and
k = 1, · · · ,T :

qD,xi, j (k) =

k−τ f
i, j∑

a=0

∆t ux
i, j(a) −

k∑
a=0

∆t vx
i, j(a), (1)

qU,xi, j (k) =

k∑
a=0

∆t ux
i, j(a) −

k−τw
i, j∑

a=0

∆t vx
i, j(a), (2)
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The POCP design problem could be formulated as a nonlinear bi-level programming as follows:

• Upper level. This level involves the government’s operation of the POCP with the goal of minimizing social
costs, which equals maximizing social welfare. This is achieved by influencing travelers’ behaviors via
spatial-temporal discounts that subsidize their trip fees. The variables in this level, represented by d, pertain
to demand, while the spatial-temporal subsidy variables are represented by α.

• Lower Level. In this level, the TNCs handle the routing choices of SAVs upon receiving travel demand
orders via a centralized platform. The aim is to maximize profit through the provision of mobility services.
The variables in this level, denoted by y, encapsulate the flow dynamics variables.

The formulation of the POCP design is presented as follows:

min
y,d,α

S ocial Cost

s.t. Demand
d,α

Constraints

y ∈ arg max
y

T NC Pro f it

s.t. Double Queue Constraints

Double Flow Matching Constraints

Node Conservation Constraints

Parking Constraints

Waiting Constraints

Other Constraints

(3)

4. Numerical Experiments

We evaluate the effectiveness of the POCP framework and provide a comparison of two scenarios in real Hong
Kong network: the privately-owned platform with no subsidy, and POCP applied with the subsidy obtained by
proposed Algorithm. Table 1 presents the effect of applying optimal spatial-temporal discount by the proposed
Algorithm in the Hong Kong network. Compared with original traffic conditions that no subsidy would be applied,
the proposed POCP with spatial-temporal subsidy saves the 1.108× 106 social cost by 9.085× 105 subsidy. More-
over, Equations indicate that the decrease of travelers cost is the sum of the decrease of TNC profit, the increase of
government cost and the decrease of social cost. Therefore, the reduction of travelers cost in POCP compared with
the privately-owned platform is approximately 2.80 × 106. This can be interpreted as the transfer of TNC profits
amounting to 9.06 × 105, government expenditures of 7.82 × 105, and the decrease of social cost as 1.11 × 106,
which represents the reduction of congestion due to subsidy in POCP.

Then we calculate the average value of link flow under SO-DTA for all links and time intervals to explore the
network-wide effects of applying subsidy in POCP in large-scale networks, as referred to in Figure 1.
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Stakeholder Cost Private-owned platform POCP

Traveler

Traveler Travel Time Cost (106) 2.141 1.468

Traveler Trip Fee Cost (106) 3.166 1.022

Traveler Waiting Cost (105) 4.137 2.268

Traveler Late Cost (105) 1.686 0.349

Traveler Late Penalty (105) 4.309 0.891

Traveler Cost (106) 5.459 2.663

TNC

SAV Travel Cost (105) 5.226 4.088

SAV Travel Revenue (106) 3.166 1.931

SAV Parking Cost (105) 0.444 1.708

TNC Profit (106) 2.168 1.262

Government
Subsidy Amount (105) 0.000 9.085

Social Cost (106) 3.246 2.138

Table 1: Results of POCP on Hong Kong network.

Figure 1: Overview of the link flow of POCP in Hong Kong network.
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MOTIVATION: Finding a parking spot can be a challenging and time-consuming task, especially in dense urban 

areas where parking spaces are limited (1). Consequently, modeling travelers’ parking search behavior is a critical 

element of urban transportation planning (2). In addition, cruising for parking can form a mobile queue of vehicles 

mixed with regular traffic, contributing to congestion and lowering the efficiency of the transportation system. 

Understanding how travelers search for parking at their destinations helps planners and policymakers identify factors 

influencing parking demand and informs the design of effective parking policies, such as dynamic pricing and demand-

responsive parking management (3). 

Several studies have explored parking search behavior using both mathematical and data-driven techniques 

(4, 5). These efforts often employ revealed or stated preference surveys to model parking type choice (e.g., on-street 

versus garage) and parking location choice. While surveys yield valuable information, integrating survey data with 

trip trajectories can offer additional insights into parking decisions and search patterns. Multiple studies have also 

simulated parking choices using traffic simulation tools, making various assumptions about parking search behavior 

for different vehicle types, including private human-driven vehicles and shared autonomous vehicles (SAVs). For 

example, Fakhrmoosavi et al. (6) examined two parking search scenarios for SAVs within a traffic simulation tool, 

assuming that private vehicles park at the nearest available location if they lack access to private parking. However, 

driver behavior often varies in terms of parking type and specific location choice, especially in highly populated urban 

areas. There remains a need to develop a model for parking type and specific parking location choice that can be 

implemented in agent-based simulators accounting for estimation uncertainties and driver heterogeneity. 

To address these needs, we developed a parking choice model that estimates travelers’ parking search 

behavior by integrating trip trajectories from GPS data with traveler surveys. A Bayesian nested logit model was 

employed to represent parking search behavior, including the decision between on-street and garage parking as well 

as the specific choice of a garage. The model accounts for factors such as parking fees, the distance between 

destinations and parking locations, driver and trip characteristics, and land use. The Bayesian framework provides a 

probabilistic basis that incorporates empirical information on real-world parking behavior and facilitates the 

quantification of uncertainties in model estimation. We then implemented the estimated model in a multiagent activity-

based travel demand model with a dynamic traffic simulation tool, POLARIS, allowing for a comprehensive full-day 

simulation of vehicle cruising and parking activities for the entire region’s population (7). Additionally, we developed 

an optimization framework for dynamic parking pricing and incorporated it into the same simulation tool; however, 

due to page limitations, details about the optimization framework and pricing results are not included here. 

For modeling and simulation, this study utilizes several data sources, including GPS data collected by the 

Chicago Metropolitan Agency for Planning (CMAP). Land use information was drawn from the Environmental 

Protection Agency’s Smart Location Database (SLD). Garage parking locations, along with associated fees and 

capacities, were matched to corresponding points derived from the GPS trajectory data to identify parking trips and 

measure cruising activity. This study advances previous research through three main contributions: 1) Combining trip 

trajectories from GPS data with a revealed preferences survey provides a more holistic view of drivers’ decision-

making processes and improves accuracy in predicting both parking type and specific parking choices. 2) Employing 

a data-driven Bayesian framework effectively captures the nested choice structure, accommodates uncertainties, and 

overcomes computational challenges, leading to more robust and reliable results. 3) By modeling parking choice and 

vehicle cruising behavior within an agent-based simulation tool for the entire Chicago region, the approach enables 

the examination of various parking policies and their impacts on regional transportation outcomes.  

DATA DESCRIPTION: This study primarily utilized data collected by CMAP (8) as part of a comprehensive 

household travel survey. The survey aimed to analyze socio-demographic characteristics and travel choice behavior 

among individuals in the Chicago metropolitan area. A total of 30,683 individuals from 12,391 households 

participated, and expansion factors were applied to scale these responses to represent the region’s 8.5 million residents 

in 2019. Data collection spanned from spring 2018 to spring 2019, capturing potential seasonal variations in travel 

and parking behavior. To obtain detailed and accurate travel records, the study employed smartphone-based GPS 

tracking that recorded trip trajectories and arrival/departure points for five weekdays. By combining survey responses 

with GPS tracking, the dataset provided information on parking decisions and behaviors, including parking type (on-

site, off-site, on-street, garage) and instances where no parking was utilized. The survey also gathered information on 

parking fees, duration, and any subsidies associated with parking, importance of arriving on-time, and other factors.  
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BAYESIAN STATISTICS NESTED LOGIT MODEL: This study employs a nested multinomial logit model 

within a Bayesian framework to estimate two levels of travelers’ parking choices: (1) the decision between on-street 

and garage parking, and (2) the selection of a specific garage. To construct the choice sets, all on-street parking 

locations are consolidated into a single alternative, with its fee and distance drawn randomly from appropriate 

distributions. Meanwhile, any garage within a five-kilometer radius of a traveler’s destination is included in the garage 

choice set. The Bayesian estimation approach is well-suited to these hierarchically structured choices; it provides a 

posterior distribution for each coefficient, thereby explicitly accounting for estimation uncertainty. Additionally, when 

prior information is incorporated, Bayesian methods can converge more quickly than traditional maximum-likelihood 

estimation (9). Figure 1 illustrates the main steps in developing the parking choice model. 

Convergence of the 

model parameters is assessed 

using the Metropolis–Hastings 

(MH) algorithm. For each 

proposed parameter vector (β, 

λ), the algorithm computes an 

acceptance probability, α. If α 

exceeds a random number 

drawn from a uniform 

distribution (0–1), the proposed 

parameters replace the current 

ones, and the model outputs are 

updated. Otherwise, the 

proposal is rejected, and the 

algorithm retains the current 

parameter values for the next 

iteration. This iterative process 

continues until a large, 

predefined maximum number 

of iterations is reached. The MH 

algorithm is part of the broader 

class of Markov chain Monte 

Carlo (MCMC) methods. It is particularly well-suited for Bayesian model estimation due to its robustness in high-

dimensional parameter spaces, relatively rapid convergence, and ease of implementation (9). In general, MCMC 

algorithms construct a Markov chain, X0, X1, ..., Xn, designed so that the chain’s stationary distribution matches the 

target density π. In that case, given 𝑋𝑛 , a “proposed value”, 𝑌𝑛+1, is generated from a pre-specified density 𝑞(𝑋𝑛 , 𝑦) 

and then approved with a probability of 𝛼(𝑋𝑛, 𝑌𝑛+1) given by  

               𝛼(𝑥, 𝑦)  =  {
𝑚𝑖𝑛 {

𝜋(𝑦)

𝜋(𝑥)

𝑞(𝑦,𝑥)

𝑞(𝑥,𝑦)
, 1}   , 𝜋(𝑥)𝑞(𝑥, 𝑦) > 0

 1  ,                                   𝜋(𝑥)𝑞(𝑥, 𝑦) = 0  
}                           (1) 

After proposing a value, 𝑌𝑛+1, if it is accepted, the algorithm sets 𝑋𝑛+1 = 𝑌𝑛+1, and if it is rejected, it sets 𝑋𝑛+1  =  𝑋𝑛 . 
The purpose of the function 𝛼(x, y) is to ensure that the Markov chain is reversible concerning the target density π(y), 

so that the target density is stationary for the chain. In this study, a Gaussian distribution is used for hyperparameters, 

and Sims’ priors are adopted for the inclusive value parameters (𝜆). The general form of Sims’ priors is:  
 

                             𝑓(𝜆) =  {
0,                                       𝑖𝑓  𝜆 ≤ 0,

𝛼(𝑠)𝜆𝑠−𝑎 exp(−𝜆𝑠) ,     𝑖𝑓  𝜆 > 0,
                                           (2) 

where s and a (𝑠 ≥ 𝑎) are the hyperparameters, 𝛼(𝑠) is the normalization constant. The prior mode of 𝜆 can be 

expressed as: 

                                                            𝜆 =  (
𝑠−𝑎

𝑠
)

1
𝑠
                                                              (3) 

SIMULATION MODELING FRAMEWORK: The estimated parking choice model was integrated into POLARIS 

to simulate travelers’ parking decisions. The decision process begins during trip planning: at this stage, the model 

determines whether a traveler will park on-street or in a garage and identifies the specific garage if that alternative is 

chosen. If a traveler decides on garage parking, they drive directly to the designated facility. If a traveler intends to 

use on-street parking, they begin traveling toward their destination and search for available on-street spaces along the 

 
FIGURE 1 Bayesian Statistic Nested Logit Model Algorithm 
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way, effectively cruising for parking. If 

they arrive at their destination and do not 

find any available on-street space, an R-

tree algorithm is used to locate the nearest 

alternative parking option. With parking 

decisions derived from the implemented 

parking choice model, travelers query 

shortest paths to get from one location to 

another, and the multimodal router 

provides information on-time to walk from 

parking location to the activity and back. 

The schematic framework of the parking 

trip process inside the simulation tool is 

illustrated in Figure 2.  

RESULTS AND DISCUSSION: To 

estimate the Bayesian model, we generated 

random on-street parking distances 

between 0 and 0.3 km (based on CMAP 

data) using a uniform distribution. On-

street parking fees were drawn from a standard normal distribution, shifted and truncated to ensure positive values, 

with a mean of zero and a standard deviation of $3 per hour. The Metropolis–Hastings (MH) algorithm was then 

executed for 1,000 iterations (following the literature), and the resulting coefficients served as the initial values for 

10,000 main iterations. The final model was applied to the Chicago network, which contains 48,379 links, 35,883 

nodes, and 1,961 zones. To reduce computational time, 25% of the population was simulated, leading to approximately 

2.6 million travelers making nearly 9 million one-way person-trips over a 24-hour period. Traffic scale factors were 

incorporated to align network performance with real-world conditions. Full details on the modeling, calibration, and 

results are provided in the complete paper. 

Parking Choice Model Estimation Results: As expected, the likelihood of a traveler selecting a particular parking 

location decreases as the distance from the destination increases. The estimated standard deviations further indicate 

that distance has a stronger effect on travelers’ garage choices than on-street choices. Similarly, higher parking fees 

reduce the probability of choosing that location, although fees had less influence on on-street parking decisions 

compared to garages. Time-of-day also affects parking preferences, with travelers more inclined to use garage parking 

during peak hours (7–10 AM and 5–8 PM). Additionally, travelers who consider arriving at the destination “very” or 

“extremely” important, according to the CMAP survey, tend to choose garage parking to save time. The model results 

show that travelers who are older than 60 years old prefer to park at on-street parking locations. Finally, in areas with 

a dense population and jobs, travelers prefer to park at garage locations due to a high demand for parking spaces. The 

credible intervals of the posterior distribution for the parking choice model attributes indicate that almost all attributes 

are statistically significant. The estimated parking choice model is implemented within POLARIS to explore the 

travelers’ parking choice behavior under various policy-sensitive scenarios. Once implemented, the model was 

calibrated to ensure that the simulated parking trips resemble the observed trips in the CMAP data. 

Example of Sensitivity Analysis and 

Discussion: Analysis of the simulated scenarios 

for the Chicago network (Figure 3) showed that, 

on average, only 50-70% of garage spaces were 

utilized during peak periods, suggesting 

potential for garage fee adjustments or capacity 

management to better accommodate specific 

vehicle types. When garage fees increased by 

50%, the number of travelers who switched to 

on-street parking due to full garages dropped by 

63%, while average garage occupancy during 

peak periods remained around 30% (Figure 4). 

Additionally, while adjusting garage fees 

citywide for the entire day significantly 

impacted the number of garage trips, fee 

  
FIGURE 2 Parking Framework Implemented inside POLARIS 



 

4 
 

variations during peak periods had minimal effect due to the high importance of these trips and the limited availability 

of on-street parking in highly congested areas. The study’s findings indicate that varying garage fees across different 

zones and time periods can effectively influence users' parking location choices. On-street parking and cruising for 

parking contribute to traffic congestion in large cities like Chicago. Therefore, dynamic garage pricing and capacity 

restrictions can serve as effective strategies for managing on-street parking demand. These insights can help develop 

a parking management strategy that maximizes the efficient use of available parking resources and optimizes curb 

space allocation. Additionally, the study’s results can assist transport planners in designing a dynamic parking pricing 

model that effectively serves stakeholder interests.  

 
FIGURE 4 Sensitivity of Parking Trips to Parking Fee and Capacity Constraints 
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ABSTRACT 21 

 

This study introduces a framework to maximize societal benefits associated with the AV dedicated lane 22 

implementation at large-scale transportation networks, considering the travel time savings and the required 23 

investments to prepare the infrastructure for their deployment. To this end, a bi-level optimization problem 24 

is formulated. The upper level determines the links for dedicated lane deployment, while at the lower level, 25 

a mesoscopic traffic simulation tool is employed to enable a realistic representation of these vehicles in a 26 

mixed traffic. The problem is solved using the Genetic Algorithm. To further reduce the computational 27 

burden, this study adopts a clustering method based on the snake algorithm to group the candidate links and 28 

reduce the size of the solution space. The proposed framework is successfully applied to the case study of 29 

Chicago downtown network, considering various demand levels, AV market penetration rates, and 30 

implementation approaches. The results highlight the need for optimizing the placement of AV dedicated 31 

lanes to ensure economically beneficial adoption of this strategy across different scenarios. This study 32 

provides transportation planners with key operational insights to facilitate the effective adoption of AV 33 

dedicated lanes during the transitional phase from HDVs to a fully AV environment. 34 
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RESEARCH MOTIVATION 1 

Autonomous Vehicle (AV) technology is increasingly being recognized for its potential to enhance mobility 2 

in transportation systems through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 3 

communication. AVs operate with shorter headways, form platoons, and increase roadway capacity 4 

compared to Human-Driven Vehicles (HDVs) (1). However, during the transition period to a fully AV 5 

environment, the coexistence of AVs and HDVs presents challenges, such as increased driving complexity 6 

and hindered AV platoon formation. 7 

To maximize AV benefits during this transition, deploying dedicated lanes for AVs (AVDLs) has been 8 

proposed to address some of the issues regarding the interactions between AVs and HDVs. Two approaches 9 

can be considered for their implementation. First, they can be added to the existing roadway infrastructure 10 

(ADL), and alternatively, they can be deployed by restricting HDVs from accessing one of the existing 11 

lanes and reserving that lane for AVs (EDL). While ADL requires substantial infrastructure investment, 12 

EDL is more cost-effective but may induce congestion and shockwaves at entry/exit points (2). This also 13 

brings up equity concerns regarding the experience of HDV users in the network (3), due to the potential 14 

longer travel times and reduced accessibility for the HDV users. Therefore, it is essential to investigate the 15 

effects of AVDL deployment in transportation networks. 16 

The effectiveness of this strategy depends on several factors, including the AV Market Penetration Rate 17 

(MPR) and technological capabilities, network topology, and travel demand level (4). In this regard, 18 

extensive research has been conducted in the literature to study the impacts of AVDLs on improving the 19 

traffic performance at the corridor level (5). However, the impacts of these dedicated lanes can propagate 20 

over the network. The AV and HDV users’ route choice can also change since more demand is attracted to 21 

the links with AVDLs and their adjacent links. Therefore, research is warranted to evaluate their impacts 22 

on traffic performance at the network-level. Besides, the AVDLs might not necessarily improve the average 23 

travel time of vehicles, as the HDVs would lose their access to a proportion of the network if the AVDL 24 

placement is not optimized (6). This calls for identifying optimal locations for their deployment. 25 

To this end, this study aims to propose a framework for optimizing the locations for implementation of 26 

AVDLs at large-scale networks. As outlined in Table 1, while some studies examined the effects of AVDLs 27 

in small networks, this problem is not fully explored in the literature, especially in the context of large-scale 28 

networks, while incorporating the differences in microscopic behavior of AVs and HDVs, the effects of 29 

presence of AVs on traffic dynamics, and en-route behavior of the vehicles. In this study, the locations for 30 

AVDL deployment are optimized in the network to maximize societal benefits, considering travel time 31 

savings and infrastructure modification costs, through a bi-level optimization framework. In this regard, an 32 

updated version of DYNASMART-P, a mesoscopic traffic simulation tool (7), is used to assess the impacts 33 

of AVDLs at lower level. This simulation tool considers the interactions between different vehicle types 34 

and the impacts of AVs' presence on network performance. The unique features of this tool are presented 35 

later. 36 

To mitigate the computational burden associated with traffic simulation and dynamic traffic 37 

assignment, this study adopts a clustering approach, originally introduced by Saeedmanesh and Geroliminis 38 

(8), to address the practical consideration of minimum length of consecutive links for AVDL deployment 39 

and effectively reduce the size of the solution space. By using this approach, the potential candidate links 40 

are grouped into clusters to constrain the size of the solution space and also the minimum length of AVDLs. 41 

The optimization problem is solved using the Genetic Algorithm (GA). The proposed framework is 42 

successfully applied to the Chicago downtown network. The main contributions of this study are as follows. 43 

• Proposing a framework for optimizing the locations of implementing AVDLs at large-scale networks 44 

considering three specific aspects of this network design problem jointly: traffic simulation for mixed 45 

fleet of AVs and HDVs; identifying candidate locations based on practical constraints for AVDLs; and 46 

computational efficiency for large-scale applications 47 

• Employing a clustering approach to group the candidate links for AVDL deployment 48 

• Examining the effects of different travel demand levels, AV MPRs, and AVDL implementation 49 

approaches on the effectiveness of this strategy as well as optimal locations for their deployment 50 

• Exploring the impacts of AVDL adoption on travel time for both HDVs and AVs 51 
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TABLE 1 Summary of related works on optimizing the placement of AVDLs at the network-level 1 

Authors Strategy Method (Lower-level) Specifications Scenarios 

Chen et al. (13) 

AVDL with 

endogenous 

demand 

Analytical (Multiclass UE 

and Diffusion models) 

• Per-lane capacity becomes tripled 

when converted to AVDL 

• AVs have no impact on regular lanes 

South Florida network 

with 2% initial MPR 

Movaghar et al. 

(15) 
AVDL 

Analytical (Multiclass UE 

model) 

• Link capacity is adjusted as a 

function of AV proportion on the link 

Sioux Falls network 

with various MPRs 

Madadi et al. 

(17) 

AVDL and AV 

zone 

Analytical (Multiuser 

class SUE model) 

• Capacity of AVDL is assumed to be 

1.5 times of regular lanes 

• Use of AVDL is mandatory for AVs 

• AVs have no impact on regular lanes 

Amsterdam network 

with various MPRs 

Seilabi et al. 

(16) 

AVDL with 

demand 

uncertainty 

Analytical (UE and 

Diffusion models) 
• Per-lane capacity becomes tripled 

when converted to AVDL 

Synthetic network with 

various potential MPRs 

Pourgholamali 

et al. (6) 

AVDL and 

pricing policy 

Analytical (Multiclass UE 

and Diffusion models) 
• Per-lane capacity is multiplied by a 

factor when converted to AVDL 
Sioux Falls network 

This study AVDL 

Simulation-based 

(Dynamic Traffic 

Assignment) 

• Distinct micro-models for AVs & 

HDVs and en-route behavior 

• Practical locations for AVDLs 

• Intersection capacity variations AVs 

• Incorporating mixed traffic dynamics  

• Chicago network for 

different MPRs & 

demand levels 

• EDL & ADL 

implementation  

PROBLEM STATEMENT 2 

This study considers a large-scale general network, 𝐺(𝑉, 𝐸), where 𝑉 denotes the set of nodes (i.e., 3 

interchanges or intersections) and 𝐸 represents the set of links (i.e., road segments). A subset of freeway 4 

links, 𝐹 ⊆ 𝐸, is considered as potential candidate links for AVDL deployment. Two approaches (𝑎) are 5 

considered for AVDLs implementation: 1) dedicating an existing lane on freeway links to AVs (EDL), and 6 

2) adding a new lane to freeway links as dedicated lane for AVs (ADL). The costs related to constructing a 7 

new lane and the technological costs, involved in developing an AV lane are taken into account in the 8 

analyses. The objective function for determining the optimal placement for AVDLs, 𝛹, considering the 9 

travel time benefits and infrastructure modification costs, is formulated as follows. 10 

𝑀𝑎𝑥𝐗 𝛹 = ∑[𝑇𝑇0(∆𝑡) − 𝑇𝑇(∆𝑡)]𝛽

∆𝑡

− ∑ ∑ 𝑥𝑓𝐶𝑎(∆𝑡)𝐿𝑓

𝑓∈𝐹∆𝑡

 

𝑥𝑓 ∈ {0,1}, ∀ 𝑎 ∈ {𝐸𝐷𝐿, 𝐴𝐷𝐿} 

(1) 

The decision variable in the Equation (1) is X, which is a vector of binary variables 𝑥𝑓 for each candidate 11 

link 𝑓 ∈ 𝐹, indicating whether that link is selected for AVDL deployment (0: not selected, and 1: selected). 12 

The first term represents the travel time savings due to the AVDL deployment, where 𝑇𝑇(𝑡) and 𝑇𝑇0(𝑡) 13 

are the system travel time of all vehicles within time interval 𝛥𝑡 after and before the deployment of AVDLs, 14 

and 𝛽 is the average value of travel time for the users in the network. The second term represents the 15 

infrastructure modification costs required for deployment of these lanes. Here, 𝐶𝑎(𝑡) is the cost associated 16 

with the AVDL implementation, in unit of $ per mile per time period 𝑡, which varies based on the chosen 17 

implementation approach, 𝑎. In this regard, for both implementation approaches, cost associated with 18 

transforming a standard lane into an AV-enabled lane is considered. Besides, the construction cost as well 19 

as the operational and maintenance cost of the added lane are considered for the ADL approach. Finally, 20 

𝐿𝑓  is the length of the candidate link 𝑓. Different demand levels, AV MPRs, and implementation approaches 21 

are considered for developing various scenarios to observe the effects of these factors on the optimal 22 

placement and the cost-effectiveness of AVDL strategy. 23 

METHODOLOGY 24 

A bi-level optimization framework is defined to identify the optimal locations of AVDLs in the network to 25 

maximize the objective function (Equation (1)). The upper-level problem aims to determine the links, on 26 
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which AVDLs need to be deployed to maximize the benefits. For estimating the objective function at lower-1 

level, an updated version of DYNASMART-P, a mesoscopic simulation tool, is used to obtain vehicle 2 

trajectories and estimate the total system travel time. In this regard, based on the selected links in the upper-3 

level, the network structure is altered to accommodate AVDLs on selected links in traffic simulation.  4 

Besides, to improve the computational efficiency, a state-of-the-art clustering approach is adopted to 5 

group the candidate links based on their expected impacts to prune the solution space and also constrain the 6 

minimum length of consecutive links for AVDLs deployment to avoid confusion for drivers by preventing 7 

frequent lane changes. This aligns the deployment strategy with practical considerations essential for the 8 

safe integration of AVDLs. The clusters of candidate links are then given as the decision variables to the 9 

optimization framework. The solution approach, traffic simulation, and the clustering method utilized in 10 

this study are described in subsequent subsections. 11 

Solution Approach 12 

The optimization problem in this study is not solvable by exact methods due to the integration of a 13 

mesoscopic traffic simulation tool. Therefore, a Genetic Algorithm (GA) is employed to maximize the 14 

objective function in Equation (1). The GA's parallelization capability makes it well-suited for this problem 15 

(13). At each generation, the objective function value is evaluated at the lower level for each individual in 16 

the population. This involves modifying the network structure to include AVDLs at selected locations and 17 

running the traffic simulation. 18 

Traffic Simulation Tool 19 

This study uses a recently updated version of DYNASMART-P to simulate the mixed traffic of AVs and 20 

HDVs in a large-scale network (7). The mesoscopic simulation tool integrates adaptive fundamental 21 

diagrams to account for the non-uniform distribution of AVs and HDVs. It incorporates distinct microscopic 22 

models: the stochastic acceleration model of Hamdar et al. (14) for HDVs and the model of Talebpour and 23 

Mahmassani (15) for AVs. The HDV model also considers driver heterogeneity during calibration. These 24 

microscopic models determine spacing-speed relationships, which are used to derive the congested section 25 

of the macroscopic fundamental diagram and dynamically update speed values across links and time 26 

intervals. Additionally, the tool refines traffic flow models for arterial links and intersection capacities 27 

based on vehicle type proportions passing each intersection. 28 

The simulation tool allows real-time route switching (en-route behavior) for AVs and for a portion of 29 

HDVs. It is further customized to model AVDLs, which are implemented as parallel links restricting HDV 30 

access. The upper-level framework determines AVDL locations, which serve as inputs to the simulation 31 

tool to modify the network structure accordingly. For further details on the simulation tool, refer to (7,16). 32 

Figure 1 briefly outlines the framework used for simulating AVs and HDVs across a large-scale network. 33 

Clustering of Candidate Links for AVDL Deployment 34 

As mentioned earlier, this study adopts the clustering method by Saeedmanesh and Geroliminis (8), to 35 

group candidate links into the clusters of links with homogeneous impacts after AVDL implementation. 36 

This technique, commonly used for network partitioning, accounts for the spatial correlation of congestion 37 

(17). This algorithm is chosen for its inherent capability to ensure connectivity within each cluster, a crucial 38 

requirement for practical AVDL deployment, while also satisfying the minimum cluster length constraint. 39 

Clustering also reduces the solution space, thereby leading to a notable reduction in computational 40 

complexity. For more information, please refer to the study by (8). 41 

The measure for evaluating the homogeneity between the candidate links is set to be the percent change 42 

in the total throughput of a link over the simulation horizon, when no AVDL is deployed, and when the 43 

AVDLs are implemented on all the candidate links. This metric effectively captures key AVDL impacts, 44 

including traffic stabilization and vehicle platooning. Since the throughput difference varies with AV MPR, 45 

demand level, and AVDL implementation approach, freeway link clustering is performed separately for 46 

each scenario. 47 
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FIGURE 1 Traffic simulation framework for mixed traffic of HDVs and AVs considering AVDLs at 1 

large-scale network 2 

Overall, in the proposed framework of this study, the clustering process is performed to group the candidate 3 

links in terms of the percent change in the total throughput of a link over the simulation horizon. Then, the 4 

formed clusters as well as the network data, demand level, AVDL implementation approach, infrastructure 5 

modification costs, and the GA hyperparameters are given to the GA. Within the GA, for each generated 6 

individual (potential solution), the objective function (Equation 1) is evaluated by obtaining the travel times 7 

of the vehicles using the traffic simulation tool and considering the infrastructure modification costs. The 8 

GA continues iterating until reaching the maximum generation count. Finally, the best solution found is 9 

reported, representing the optimized placement of AVDLs within the network. 10 

CASE STUDY 11 

The proposed framework in this study is applied to the Chicago downtown network, which comprises 1578 12 

nodes, 4805 links, and 218 traffic analysis zones. The network consists of a total of 150 freeway links (73 13 

miles in total), which are considered as potential candidates for deploying AVDLs. Figure 2(a) 14 

demonstrates a schematic depiction of the network. As stated earlier, two implementation scenarios of EDL 15 

and ADL are explored AVDLs. These two implementation scenarios are compared to the base scenario 16 

(w/o AV dedicated lane), where no AVDL is deployed on the network.  17 

The simulation is conducted for the AM peak period from 5:00 AM to 10:00 AM. An extra two hours 18 

of simulation is incorporated to unload the network. This study explores two demand levels: The “base 19 

demand level”, which is calibrated based on historical real-world data (18), resulting in about 760,000 20 

vehicles in the network. The second scenario is “high demand level”, which is generated by increasing base 21 

demand with 30% additional demand. This scenario is included since the presence of AVs is anticipated to 22 

increase vehicle-miles traveled. Figure 2(b) shows the demand profiles associated with base and high 23 
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demand level scenarios. Various AV MPRs from 10% to 90% with increment of 10% are evaluated. The 1 

simulation is conducted considering a non-uniform distribution of AVs and HDVs, comprising 10 distinct 2 

driver classes, across the network. 3 

The preferred headway of AVs is considered to be 1 second, when operating on the regular lanes. It 4 

was found that the preferred headway of AVs could be lower when operating within AV platoons, as 5 

opposed to when they are in a mixed traffic stream (6). In this regard, in this study, the preferred headway 6 

of AVs is considered to be 0.5 second on the dedicated lanes (6). The average computational time of 7 

performing the traffic simulation is about 25 minutes on an Intel(R) Xeon(R) Gold 6246R CPU @ 3.40 8 

GHz (2 processors) with 256 GB RAM. Regarding the values of parameters related to the infrastructure 9 

modification costs associated with AVDLs, please refer to (6). The average value of travel time of $20 per 10 

hour for users is considered. The AM peak period travel time is multiplied by a factor to be converted to 11 

daily travel time. In addition, for clustering the candidate links, the number of clusters is considered to be 12 

15 as the baseline, and the minimum length of clusters is assumed as 1 mile.  13 

The net benefit, total length of selected links for AVDL deployment, and travel time improvements for 14 

AVs and HDVs are analyzed across different scenarios. Also, sensitivity analyses are conducted on 15 

infrastructure modification costs and number of clusters to evaluate the effects of these parameters on 16 

optimization results and optimal locations for AVDLs.  17 

  

(a) (b) 

FIGURE 2 a) Schematic depiction of case study network, and b) Profiles of different demand 18 

scenarios for the AV peak period 19 

KEY FINDINGS 20 

The key findings of this study are as follows. 21 

• The cost-effectiveness, optimal placement, and the benefits of AVDL strategy at the network level are 22 

sensitive to AV MPR, demand level, and the implementation approach for these lanes. 23 

• Optimizing the placement of AVDLs in the network, considering the infrastructure modification costs, 24 

is essential to make the adoption of this strategy economically beneficial for different demand levels 25 

and AV MPRs. 26 

• Incorporating the effects of AVs on the performance of the regular lanes is crucial when exploring the 27 

cost-effectiveness of AVDL strategy at the network level, particularly for high AV MPRs. 28 

• The AVDL strategy is more effective for improving the mobility in the network when the AV MPR is 29 

relatively low (20% and 30%). 30 

• Converting an existing lane to AVDL at optimal locations reduces the travel times of HDVs, which 31 

holds significant relevance when evaluating the equity and fairness of this strategy. 32 

• The benefits of AVDLs deployment on optimal locations in the network is more evident for high 33 

demand levels, compared to when the congestion level is relatively low in the network. 34 

• None of the explored implementation approaches is more cost-effective than the other one across 35 

various demand levels and AV MPRs, which calls for different analyses based on the predicted market 36 

share and travel demand in future.37 
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Experimental study on characteristics of autonomous vehicles under different 

loads 

Shi-Teng Zheng1, Jian Shang1, Rui Jiang1, 

1 School of Systems Science, Beijing Jiaotong University, Beijing 100044, China 

Over the past decade, autonomous vehicle (AV) has undergone rigorous testing and evaluation 

(Feng et al., 2023; Feng et al., 2021; Yan et al., 2023), and has developed from concept to 

commercial reality. The AV technology is designed not only to alleviate driving tasks of human 

drivers, mitigate human errors (Braun and Randell, 2020), and enhance driving safety 

(Chirachavala and Yoo, 1994; Kikuchi et al., 2003), but also to enhance traffic efficiency and 

improve traffic capacity (Potluri, 2023). Due to their potential to revolutionize traffic safety and 

mobility, an increasing number of productive AVs are released on the road, paving the way for 

large-scale autonomous driving in future transportation. 

Real-world experimental studies using commercial AVs, particularly those equipped with 

adaptive cruise control (ACC) systems, have been conducted to gain deeper insights into AV 

behavior and characteristics. For example, Milanés and Shladover (2014) conducted a four-vehicle 

platoon experiment with the leading vehicle executing the speed changes and pointed out that the 

multiple consecutive ACC vehicles are unstable. Knoop et al. (2019) carried out the experiment 

on the public freeway using seven vehicles equipped with SAE level-2 automation and also found 

that the ACC vehicles' control system is unstable. Makridis et al. (2020) studied a five-vehicle 

platoon and showed that the platoon is unstable in perturbation situations. Gunter et al. (2021) also 

tested the string instability of an eight-vehicle platoon with seven ACC vehicles following under 

a perturbation and observed the last vehicle disengaging from ACC due to the violent oscillations. 

Ciuffo et al. (2021) carried out an experimental study of ACC platoon under different perturbation 

situations and summarized that the ACC vehicle platoon under the minimum time gap setting 

exhibits more unstable behavior, while it is stable under the maximum time gap setting. 

It is noteworthy that current experimental studies on AVs primarily focus on the AVs 

themselves, often neglecting the impact of external factors such as vehicle load conditions. For 

instance, a typical passenger car with a seating capacity of five weighs of approximately 1,400-

2,000 kg, with a typical load of about 375-500 kg, roughly accounting for 1/4 of the total vehicle 

weight. This variation can significantly influence the power-to-weight ratio and, consequently, AV 

performance. Murthy and Masrur (2016) highlighted that different load conditions affect a 

deceleration capability, underscoring the need to reassess safe braking conditions within a platoon 

to establish appropriate following distances.  

 
 Corresponding author: jiangrui@bjtu.edu.cn 
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Motivated by the fact, very recently, we performed an experimental study on the 

characteristics of AVs under varying load conditions on Nov. 7, 2024, on a about 1.5-kilometer 

straight track in the closed test field affiliated to Research Institute of Highway, Ministry of 

Transport, China. The snapshots of experiment are provided in Figure 1. 

  
                                                (a)                                                                                (b) 

Figure 1. Snapshot of the experiment. (a) The AV tracking the pre-specified speed. (b) The load applied using 

standard sandbags, each weighing 25 kg. 

 

In the experiment, we employed a programmable AV, as opposed to a commercially available 

AV, allowing precise control over a pre-specified speed profile without the presence of leading 

vehicles. Our study focuses solely on longitudinal control, which is implemented in two levels: at 

the upper level, an acceleration command is generated based on the tracked speed profile, while at 

the lower level, the acceleration command is executed through the AV's motion control 

mechanisms.  

To simulate real-world traffic oscillations, the AV was programmed to follow a carefully 

designed speed profile consisting of multiple target speeds of 0, 10, 20, 30, 40, and 50 km/h. The 

transitions between these stable speeds were executed with a uniform acceleration or deceleration 

of 1 m/s2. The pre-specified speed profile is illustrated in Figure 2.  

 
Figure 2. The pre-specified speed profile of the AV in the experiment. 

 

The load is adjusted using standard 25 kg sandbags, which are added or removed at one end 

of the straight track. After completing a full speed profile—defined as one run—the AV performs 

a U-turn and prepares for the next run to return to the starting point, at which point the load is 
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modified. Consequently, each load condition is tested twice. The experimental run settings are 

detailed in Table 1. The AV is equipped with onboard sensors, including LiDAR and high-precision 

GPS, which facilitate its autonomous driving functions and enable continuous data collection 

throughout the experiments at a frequency of 20 Hz. 

 

Table 1. Details of the experiment runs in load order. 

No. Experiment time Loads (kg)† 

1 10:58 - 11:03 0 

2 11:05 -11:13 50 

3 11:35 - 11:41 100 

4 11:44 - 11:50 150 

5 12:55 - 13:03 200 

6 13:05 - 13:11 250 

7 13:38 - 13:44 300 

8 13:22 - 13:29 350 
†Excluding the driver's weight, the driver is responsible for safety supervision and steering operations in the 

car, with a weight of 75 kg. 

 

The experimental results for the command acceleration, actual acceleration, and actual speed 

of the AV are reported in Figure 3. It is evident that under varying load conditions, the AV is more 

significantly affected during the deceleration phase compared to the constant speed and 

acceleration phases. In this case, the vehicle adjusts its command acceleration to maintain the pre-

specified speed, resulting in variations in actual acceleration and reduced speed control precise. 

Notably, as the load increases (represented by the color transition from cool to warm), the 

commanded acceleration decreases during deceleration, while the range of actual acceleration 

narrows — the peak acceleration is reduced, and the valley acceleration is elevated. 

 
Figure 3. The experimental command acceleration, actual acceleration, and actual speed of the AV. 
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We would like to highlight that the contribution of this study is at least twofold. (i) It provides 

insights into the real-world performance of AVs under varying load conditions. (ii) The 

experimental results emphasize that vehicle load cannot be ignored, offering valuable information 

for the development of more precise AV control algorithms.  

In future work, we will present further data analysis of the experiment, including a 

quantitative comparison of the differences across load conditions, to better understand the 

relationship between AV performance and vehicle load. Additionally, we will model the lower-

level controller incorporating load factors and conduct a simulation study to analyze the impact of 

AV loads on traffic flow characteristics. 
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The Dynamic Spatial Price Equilibrium Problem 

Terry L. Friesz 

Cheng-Chang Lin 

Introduction. The spatial price equilibrium problem explains how the demand for freight services is 
derived from spatially separated production and consumption activities. We are concerned herein 
with generalization of the notion of spatial price equilibrium from a static to a dynamic setting under 
highly specific circumstances to facilitate the practical modeling of truck borne freight flows. In that 
spatial price equilibrium is considered an expression of how the transport of commodities occurs in 
response to differences between origin and destination prices of transportable goods, it is an obvious 
paradigm for such modeling.  

Spatial price equilibrium (SPE) is achieved when remote market price equals local market price plus 
the cost of transporting the goods of interest to the remote market. The essential elements of static 
SPE theory are generally thought to have first been articulated in the seminal work of Cournot (1927). 
Later Samuelson (1952), Beckmann et al. (1956), Smith (1963) and Takayama and Judge (1964) 
connected SPE theory to linear and nonlinear programming, thereby opening up the prospect of 
solving truly large SPE problems. 

Further refinements of static SPE theory, especially the introduction of congestion, fully general 
supply and demand functions, and nonlinear complementarity and variational inequality 
formulations were made by Florian and Los (1982), Friesz et al. (1983), Friesz and Tobin (1983), 
Dafermos (1983), Dafermos and Nagurney (1984), Smith (1984), Chao and Friesz (1984), Smith and 
Friesz (1985), and several others over the last 70 years. Notably Friesz et al. (1983) and Dafermos and 
Nagurney (1984) present perhaps the earliest variational inequality formulations of static SPE; Friesz 
et al. (1983) also present the first nonlinear complementarity formulation. 

It is Beckmann in Chapter 5 of Beckmann et al. (1956) who is the first to give the key insights for an 
extremal formulation of spatial price equilibrium; this occurs in the same book where Beckmann 
gives the much studied and widely employed mathematical programming formulation of static user 
equilibrium of passenger flows. Also found in Chapter 5 of Beckmann et al. (1956) are remarks about 
how dynamic equilibrium models might be constructed. Although Beckmann's suggestions 
regarding dynamic equilibrium have been followed with respect to dynamic user equilibrium 
(Wardrop's first principle), relatively little research has been done on extensions of spatial price 
equilibrium to a dynamic setting.  

 In this paper, we present a dynamic extension of spatial price equilibrium and, in the process, 
provide (i) a succinct definition of dynamic spatial price equilibrium (DSPE), (ii) an associated 
differential variational inequality (DVI), and (iii) an analysis of that DVI. These are provided in the hope 
of stimulating research on DSPE by other scholars, as well as applications by professionals involved 
in strategic freight planning. Our contribution is the first spatial price equilibrium formulation that 
explicitly treats lead times (time shifts) in a continuous-time context in the articulation of inventory 
dynamics, when such lead times are dictated by the transport of goods to distant markets. Intimately 
tied to our basic formulation is its reformulation as a differential variational inequality (DVI), which 
immediately provides necessary conditions that must be satisfied by equilibrium solutions. 
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In this paper we show that there is a differential variational inequality (DVI) that integrates the theory 
of spatial price equilibrium in a dynamic setting with the path delay operator notion used in the theory 
of dynamic user equilibrium as presented in Friesz and Han (2022). Our path delay operator is based 
on LWR theory and vetted in the published dynamic user equilibrium literature; see, in particular, the 
paper by Han et al. (2016). The aforementioned integration is original and allows truck borne freight 
to be modelled in way that recognizes for the interaction of freight and passenger vehicles by 
explicitly considering multiple classes of vehicles. As such, our model of DSPE to be presented at 
DTA2025 constitutes a significant addition to both the spatial price equilibrium and the freight 
network equilibrium modeling literatures. 

The Classical Spatial Price Equilibrium Problem. We posit a freight network that transports several 
types of commodities between markets with positive excess supply and those with positive excess 
demand. The decision variables of the model correspond to the arabic letters ℎ, 𝑆𝑆, 𝐷𝐷, and 𝐼𝐼. In 
particular, ℎ will refer to path flow, 𝑆𝑆 to rate of supply, 𝐷𝐷 to demand rate, and 𝐼𝐼 to inventory/backorder 
level. Furthermore, we will use 𝑐𝑐 to refer to transportation cost per unit of flow. Commodity prices 
will be 𝜋𝜋. The relevant subscripts/superscripts for variables, as is meaningful, are 𝑝𝑝 for a specific 
path, 𝑘𝑘 for a specific commodity, and 𝑖𝑖 or 𝑗𝑗 for a specific node. Other notation will be introduced as 
needed.  

We will employ the following sets in discussing spatial price equilibrium and its extension from a 
static to a dynamic setting: 

𝒩𝒩 = the set of nodes in the network of interest 

𝒦𝒦 = the set of commodities 

𝒲𝒲 = the set of origin-destination pairs 

𝒫𝒫 = the set of all paths connecting the OD pairs 

𝒫𝒫𝑖𝑖𝑖𝑖𝑘𝑘 = the subset of paths connecting (𝑖𝑖, 𝑗𝑗) ∈ 𝒲𝒲 and suitable for commodity 𝑘𝑘 ∈ 𝒦𝒦 

Let us consider a static spatial price equilibrium using the following vectors: 

 ℎ = (ℎ𝑝𝑝𝑘𝑘:𝑝𝑝 ∈ 𝒫𝒫,𝑘𝑘 ∈ 𝒦𝒦)  

               𝑆𝑆 = (𝑆𝑆𝑖𝑖𝑘𝑘: 𝑖𝑖 ∈ 𝒩𝒩,𝑘𝑘 ∈ 𝒦𝒦)  

 𝐷𝐷 = (𝐷𝐷𝑖𝑖𝑘𝑘: 𝑖𝑖 ∈ 𝒩𝒩,𝑘𝑘 ∈ 𝒦𝒦) 

 𝜋𝜋  = (𝜋𝜋𝑖𝑖𝑘𝑘: 𝑖𝑖 ∈ 𝒩𝒩,𝑘𝑘 ∈ 𝒦𝒦)   

 ℎ(𝑡𝑡) = (ℎ𝑝𝑝𝑘𝑘:𝑝𝑝 ∈ 𝒫𝒫,𝑘𝑘 ∈ 𝒦𝒦)  

The essential characteristic of a spatial price equilibrium is that, if the shipping rate between a pair 
of supply and demand nodes is positive, the delivered price equals the local price. Moreover, if the 
delivered price exceeds local price, the shipping rate is zero. Static spatial price equilibrium may be 
stated in the following fashion: 

ℎ𝑝𝑝𝑘𝑘 > 0,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖𝑘𝑘 ⇒ 𝜋𝜋𝑖𝑖𝑘𝑘 + 𝑐𝑐𝑝𝑝𝑘𝑘(ℎ) = 𝜋𝜋𝑗𝑗𝑘𝑘    (1) 
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                                                            𝜋𝜋𝑖𝑖𝑘𝑘 + 𝑐𝑐𝑝𝑝𝑘𝑘(ℎ) > 𝜋𝜋𝑗𝑗𝑘𝑘,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖𝑘𝑘 ⇒ ℎ𝑝𝑝𝑘𝑘 = 0     (2) 

as first noted by Friesz et al. (1983).  

It is well known and was first established by Friesz et al. (1983) that these conditions are satisfied by 
solutions of the following static, finite-dimensional variational inequality: find  
(ℎ∗, 𝑆𝑆∗,𝐷𝐷∗) ∈ Ω such that 

       𝑐𝑐(𝑡𝑡,ℎ∗)𝑇𝑇(ℎ − ℎ∗) − 𝛩𝛩(𝐷𝐷∗)𝑇𝑇(𝐷𝐷 − 𝐷𝐷∗)+𝛹𝛹(𝑆𝑆∗)𝑇𝑇(𝑆𝑆 − 𝑆𝑆∗) ≥ 0   ∀(ℎ, 𝑆𝑆,𝐷𝐷) ∈  Ω        (3) 

where 𝛩𝛩 and 𝛹𝛹 are, respectively inverse commodity supply and demand vector functions. Of course, 
Ω is the set of feasible solutions as defined by market clearing (flow conservation) constraints and 
nonnegativity restrictions. 

The Dynamic Spatial Price Equilibrium Problem with Costless Inventorying. Now we assume 

                ℎ ∈ (𝐿𝐿+2 [𝑡𝑡0, 𝑡𝑡1])|𝒫𝒫||𝒦𝒦|   𝜋𝜋: [𝑡𝑡0, 𝑡𝑡1] ∈ (𝐿𝐿+2 [𝑡𝑡0, 𝑡𝑡1])|𝒩𝒩||𝒦𝒦| 

 𝑆𝑆 ∈ (𝐿𝐿+2 [𝑡𝑡0, 𝑡𝑡1])|𝒩𝒩||𝒦𝒦|   𝐼𝐼 ∶ [𝑡𝑡0, 𝑡𝑡1] ∈ (𝑊𝑊1[𝑡𝑡0, 𝑡𝑡1])|𝒩𝒩||𝒦𝒦| 

             𝐷𝐷 ∈ (𝐿𝐿+2 [𝑡𝑡0, 𝑡𝑡1])|𝒩𝒩||𝒦𝒦| 

where 𝐿𝐿+2 [𝑡𝑡0, 𝑡𝑡1] is the space of square integrable functions relative to the interval [𝑡𝑡0, 𝑡𝑡1] of the real 
line and (𝐿𝐿+2 [𝑡𝑡0, 𝑡𝑡1])|𝒩𝒩||𝒦𝒦| is its |𝒩𝒩||𝒦𝒦|-fold product, while 𝑊𝑊1[𝑡𝑡0, 𝑡𝑡1] is a Sobolev and space and 
(𝑊𝑊1[𝑡𝑡0, 𝑡𝑡1])|𝒩𝒩||𝒦𝒦| is its |𝒩𝒩||𝒦𝒦|-fold product  We take the variables (ℎ, 𝑆𝑆,𝐷𝐷) to be controls; the 
inventory variables 𝐼𝐼 will be the state variables. We use 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘  -to denote the travel time (delay) between 
origin-destination pair (𝑖𝑖, 𝑗𝑗) ∈ 𝒲𝒲 for commodity 𝑘𝑘 ∈ 𝒦𝒦. 

The key DSPE conditions are stated in the following fashion:  

ℎ𝑝𝑝𝑘𝑘(𝑡𝑡) > 0,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖𝑘𝑘 ⇒ 𝜋𝜋𝑖𝑖𝑘𝑘(𝑡𝑡) + 𝑐𝑐𝑝𝑝𝑘𝑘(𝑡𝑡,ℎ) = 𝜋𝜋𝑗𝑗𝑘𝑘�𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 �    (4) 

                                                  𝜋𝜋𝑖𝑖𝑘𝑘(𝑡𝑡) + 𝑐𝑐𝑝𝑝𝑘𝑘(𝑡𝑡,ℎ) > 𝜋𝜋𝑗𝑗𝑘𝑘�𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 �,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖𝑘𝑘 ⇒ ℎ𝑝𝑝𝑘𝑘(𝑡𝑡) = 0    (5) 

Note also that 

𝜋𝜋𝑖𝑖𝑘𝑘(𝑡𝑡) + 𝑐𝑐𝑝𝑝𝑘𝑘(𝑡𝑡,ℎ) ≥ 𝜋𝜋𝑗𝑗𝑘𝑘�𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 �    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝒲𝒲 ,𝑘𝑘 ∈ 𝒦𝒦,𝑝𝑝 ∈ 𝒫𝒫𝑖𝑖𝑖𝑖𝑘𝑘     (6) 

If (6) did not obtain, then, for some (𝑖𝑖, 𝑗𝑗) ∈ 𝒲𝒲, we would have  

𝜋𝜋𝑖𝑖𝑘𝑘(𝑡𝑡) + 𝑐𝑐𝑝𝑝𝑘𝑘(𝑡𝑡,ℎ) < 𝜋𝜋𝑗𝑗𝑘𝑘�𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 � 

and need to consider two cases: 

(𝑖𝑖) ℎ𝑝𝑝𝑘𝑘(𝑡𝑡) > 0 ⇒ 𝜋𝜋𝑖𝑖𝑘𝑘(𝑡𝑡) + 𝑐𝑐𝑝𝑝𝑘𝑘(𝑡𝑡,ℎ) = 𝜋𝜋𝑗𝑗𝑘𝑘�𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘 �, which is a contradiction; or 

(𝑖𝑖𝑖𝑖) ℎ𝑝𝑝𝑘𝑘(𝑡𝑡) = 0, which is a failure to take advantage of an apparent spatial arbitrage (delivered price 
strictly less than local price). Since the presence of such arbitrage opportunities is inconsistent with 
equilibrium, we enforce (6). We also note that, in light of the nonnegativity of departure rates (ℎ ≥ 0), 
expression (5) is redundant since it is implied by (4). 
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For the special case of costless inventorying (holding and backordering), an intuitive extension of the 
VI for static SPE yields a mathematically rigorous DVI for DSPE. However, the variational analysis 
needed to establish the validity of the DVI is tedious. Nonetheless, it will be explained during our 
envisioned DTA2025 presentation using some simplifying “tricks” that make the proof accessible to 
those not familiar with differential game theory. The result (for costless inventory) is that the following 
differential variational inequality has solutions that are dynamic spatial price equilibria: 

� [𝑐𝑐(𝑡𝑡, ℎ∗)𝑇𝑇
𝑡𝑡1

𝑡𝑡0
(ℎ − ℎ∗)                                                                                                              

                                     −𝛩𝛩(𝐷𝐷∗)𝑇𝑇(𝐷𝐷 − 𝐷𝐷∗)+𝛹𝛹(𝑆𝑆∗)𝑇𝑇(𝑆𝑆 − 𝑆𝑆∗)]𝑑𝑑𝑑𝑑 ≥ 0   ∀(ℎ, 𝑆𝑆,𝐷𝐷) ∈  Ω    (7) 

where  Ω is the set of feasible controls, defined as 

Ω = {(ℎ, 𝑆𝑆,𝐷𝐷)}: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (8) − (13) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑜𝑜𝑜𝑜𝑜𝑜} 

We will show during DTA2025 that the application of appropriate necessary conditions for differential 
variational inequality (7) yields the DSPE conditions, along with the other relevant considerations 
described above, and thereby establish that (7) is a correct DVI formulation. 

The relevant constraints are given immediately below; in fact, their articulation relies on constants 
𝐴𝐴𝑖𝑖𝑘𝑘 and 𝐵𝐵𝑖𝑖𝑘𝑘  the initial final and terminal inventory levels and the state variables 𝐼𝐼𝑖𝑖𝑘𝑘(𝑡𝑡) 

 

      
𝑑𝑑𝐼𝐼𝑖𝑖𝑘𝑘(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑖𝑖𝑘𝑘(𝑡𝑡) + � � ℎ𝑝𝑝𝑘𝑘

𝑝𝑝∈𝒫𝒫𝑗𝑗𝑗𝑗
𝑘𝑘𝑗𝑗∈:(𝑗𝑗,𝑖𝑖)∈𝒲𝒲

�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗𝑘𝑘� − � � ℎ𝑝𝑝𝑘𝑘

𝑝𝑝∈𝒫𝒫𝑖𝑖𝑖𝑖
𝑘𝑘𝑗𝑗:(𝑖𝑖,𝑗𝑗)∈𝒲𝒲

(𝑡𝑡) − 𝐷𝐷𝑖𝑖𝑘𝑘(𝑡𝑡)       (8) 

   𝐼𝐼𝑖𝑖𝑘𝑘(𝑡𝑡0) = 𝐴𝐴𝑖𝑖𝑘𝑘                             (9)  

  𝐼𝐼𝑖𝑖𝑘𝑘(𝑡𝑡1) = 𝐵𝐵𝑖𝑖𝑘𝑘                              (10) 

−ℎ𝑝𝑝𝑘𝑘 ≤ 0 �𝜇𝜇𝑝𝑝𝑘𝑘�    ∀𝑘𝑘 ∈ 𝒦𝒦,𝑝𝑝 ∈ 𝒫𝒫    (11)
−𝑆𝑆𝑖𝑖𝑘𝑘 ≤ 0 �𝛼𝛼𝑖𝑖𝑘𝑘�  ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑖𝑖 ∈ 𝒩𝒩    (12)
−𝐷𝐷𝑖𝑖𝑘𝑘 ≤ 0 �𝛽𝛽𝑖𝑖𝑘𝑘�  ∀𝑘𝑘 ∈ 𝒦𝒦, 𝑖𝑖 ∈ 𝒩𝒩,   (13)

 

Dynamic Spatial Price Equilibrium With Inventory Costs and State-Space Constraints. When 
inventory costs are introduced the DVI possesses pure state-space constraints and its adjoint 
variables (dynamic dual variables) may possess jumps. Such problems have intrinsically difficult to 
analyze necessary conditions; indeed their necessary conditions may be intractable. 

We will present our latest research on state-space constrained DPSE at DTA2025, including 
algorithms. Our research will continue up to the convening of the Symposium. 
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1. Introduction

Mobility-on-Demand (MoD) systems, such as ride-hailing services, dynamically allocate
vehicles in response to real-time user demand, enhancing user convenience and vehicle uti-
lization. However, spatiotemporal demand-supply imbalances frequently occur, leading to
vehicle shortages in high-demand areas and excess idle vehicles in low-demand regions. These
inefficiencies increase service wait times, operational costs, and empty trips, emphasizing the
need for effective vehicle rebalancing strategies([1][2][3]). While existing studies primarily
focus on centralized control-based rebalancing, challenges such as demand uncertainty, cost
efficiency, and real-time adaptability remain key concerns([4][5][6][7]).

This study considers a ride-hailing model where a central platform manages user re-
quests and disseminates demand information. However, the platform does not directly
control vehicles, as final movement decisions are made by drivers. In this structure, self-
rebalancing—where drivers independently decide their repositioning—becomes a crucial fac-
tor in maintaining service efficiency([8]). Unlike theoretical centralized models, real-world
ride-hailing platforms can only suggest repositioning strategies, making it essential to de-
velop a realistic rebalancing framework that accounts for driver behavior.

To address this gap, this study explores self-rebalancing behavior using a utility-based
model. Drivers make relocation decisions based on both platform-provided demand forecasts
and personal experience, balancing factors such as expected service opportunities, relocation
costs, and competition. Additionally, incentive mechanisms are introduced to influence driver
choices, guiding repositioning movements toward system-wide efficiency. By integrating in-
centives into the self-rebalancing model, this study aims to enhance rebalancing efficiency
while respecting driver autonomy.

2. Methodology

This study investigates self-rebalancing behavior in ride-hailing services, where drivers
independently decide their repositioning based on perceived conditions. Unlike centrally



controlled rebalancing, self-rebalancing reflects decentralized decision-making influenced by
multiple factors, including predicted demand, travel costs, competition, and incentives.

2.1. Utility-Based Driver Choice Model

A utility function-based approach is employed to model self-rebalancing decisions. The
function consists of four main components:

A utility function-based approach is employed to model self-rebalancing decisions. The
function consists of four main components. The Attraction Term represents expected demand
in each region, driving vehicles toward areas with potential service opportunities. The Cost
Term reflects the travel cost from the origin to the destination, discouraging unnecessary
long-distance relocations. The Competition Term accounts for vehicle concentration in a
region and its surroundings, discouraging movements toward oversaturated areas. Lastly,
the Incentive Term represents external incentives designed to encourage vehicle movement
toward specific areas.

Attrij = max (0, P redictedDemandj − IdleV ehiclesj)
Costij = Tij

Compij = IdleVehiclesj +
ReachableV ehiclesj

n
Iij = f (Policy)

where Policy refers to system-wide incentive strategies.
Each term is normalized to ensure balanced contributions to decision-making:

Uij = α ·NormAttrij − β ·NormCostij − γ ·NormCompij + δ ·NormI ij

NormXij =
Xij −Xmin

Xmax −Xmin

The probability of a driver relocating from region i to region j is determined using a logit
model:

pij =
eUij∑
eUij )

2.2. Simulation Setup

A simulation is conducted to analyze the impact of utility parameters on system perfor-
mance under two demand scenarios:

• Scenario 1: High-demand setting with spatially imbalanced main flows (1,000 requests).

• Scenario 2: Low-demand setting with randomly distributed requests (250 requests).



A grid-based environment with 16 regions (2 km × 2 km) is used, where 200 vehicles operate.
Travel times are predefined based on a constant speed assumption. Each simulation runs for
two hours with a one-second timestep. This study consists of two experimental phases. In the
first phase, driver-driven factors—attraction, cost, and competition terms—are analyzed by
varying their parameter weights to examine their effects on service rate and idle time ratio.
Based on the results, a representative parameter combination is selected. In the second
phase, the selected parameter combination is used as a baseline for evaluating policy-driven
factors, where the incentive term is introduced to examine its impact on vehicle repositioning.
This two-phase experimental approach allows for a structured analysis, first examining how
drivers naturally respond to different mobility conditions and then evaluating how external
incentives can guide their repositioning decisions.

3. Driver-driven Factors Results

The simulation results show that service rate and idle time ratio are influenced by the
weights of attraction, cost, and competition terms in the utility function, with varying impacts
depending on demand conditions. This highlights the need for careful parameter adjustment
to enhance system efficiency.

For service rate, the attraction term (α) played a key role. In high-demand settings (Sce-
nario 1), a lower α improved service rate by minimizing unnecessary repositioning, while in
low-demand settings (Scenario 2), a higher α increased service rate by encouraging move-
ment toward dispersed demand. The competition term (γ) also affected service rate, where
moderate values (∼0.5) improved efficiency, but excessive values discouraged movement to
high-demand areas.

For idle time ratio, the cost term (β) significantly reduced idle time by discouraging
long-distance repositioning. The α had contrasting effects: a lower α decreased idle time in
Scenario 1 by keeping vehicles in demand-dense areas, while a higher α reduced idle time in
Scenario 2 by facilitating proactive repositioning. The γ helped distribute vehicles efficiently
at moderate levels but increased idle time when overemphasized.

These findings suggest that adjusting the relative influence of attraction, cost, and compe-
tition based on demand patterns can enhance service performance while maintaining efficient
vehicle distribution.

4. Framework for Policy-driven Factors Analysis

This phase presents the framework for analyzing policy-driven factors, which will be
conducted in future experiments. Policy-driven factors refer to incentive terms that are
determined based on the strategic objectives of the service system. Unlike driver-driven
factors, which reflect individual decision-making based on perceived conditions, policy-driven
factors introduce external interventions to influence vehicle movements and enhance overall
service efficiency.



To conduct this experiment, the representative parameter combinations were selected
based on the driver-driven factors analysis for each scenario. Scenario 1 involves large-scale
demand with concentrated movement patterns. To achieve high service rates and reduced idle
time, the selected parameter combination is (α, β, γ) = (0.25, 1.5, 0.5). Scenario 2 features
smaller-scale demand with dispersed movement patterns. To encourage proactive movement
toward demand locations while minimizing competition, the selected parameter combination
is (α, β, γ) = (1.25, 1.0, 0.25). Using these fixed parameter settings, the incentive term (δ)
will be incorporated into the utility function, and its effects will be examined under three
conditions. The Baseline scenario excludes incentives, considering only attraction, cost, and
competition terms. The Fixed Incentive scenario applies a constant incentive value to spe-
cific target regions. The Dynamic Incentive scenario adjusts incentives based on real-time
demand-supply imbalances. These conditions will allow an assessment of how different in-
centive strategies influence vehicle repositioning and overall system performance.

5. Conclusion

This study examined the impact of self-rebalancing in ride-hailing services by analyzing
driver decision-making through a utility-based approach. The simulation results demon-
strated that the effects of attraction, cost, and competition terms on service performance
vary depending on demand characteristics. In high-demand scenarios, limiting unnecessary
repositioning improved service rates, while in low-demand environments, proactive move-
ments helped balance supply. These findings highlight the importance of scenario-specific
parameter adjustments for effective vehicle rebalancing.

Building on this framework, future work will extend the analysis to policy-driven factors
by incorporating incentive mechanisms into the utility function. By evaluating fixed and
dynamic incentive strategies, we aim to explore how external interventions can further im-
prove service efficiency while maintaining driver autonomy. These insights will contribute
to developing adaptive and data-driven rebalancing strategies that enhance overall mobility
system performance.
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1. INTRODUCTION 
Dynamic Traffic Assignment (DTA) is a fundamental framework for modeling traffic flow dynamics and user 
equilibrium in transportation networks. Traditional DTA models often rely on heuristic perturbations or 
computationally expensive numerical approximations for optimization and calibration. This study introduces a 
differentiable DTA simulation model that enables gradient-based optimization by leveraging iterative 
backpropagation and auto-differentiation techniques. By formulating DTA simulations for user equilibrium (UE) 
conditions as a computational graph, we establish a robust framework for calibrating traffic models and optimizing 
route choice strategies efficiently. The UE conditions are approached with the method of successive averages 
(MSA) for passenger route flows (choices), and passengers’ route choices are assumed to be based on 
approximated link travel times instead of recorded route travel times from previous iterations, to ensure the 
analytical differentiability of the simulated link flows throughout simulation iterations, whose partial derivatives 
with respect to arbitrary traffic parameters are analytically derived for illustration. With the iterative 
backpropagation (IB) algorithm and auto-differentiation, some preliminary experiments are conducted to validate 
the proposed framework of differentiable DTA simulation for UE in calibrating various traffic parameters. The 
proposed framework has high potential in simultaneous calibrations of high dimensional traffic parameters in 
large-scale transportation networks, as the analytical gradients enable gradient-based optimization algorithms to 
efficiently update parameters without redundant computations. 
 
Simulation-based optimization (SBO) has been widely used in transportation studies to calibrate passenger route 
choice models and optimize network performance. Osorio & Bierlaire (2013) introduced a metamodel SBO 
approach that integrates traffic simulation information to enhance network efficiency and reliability, while Chong 
& Osorio (2018) extended this framework to dynamic problems with time-dependent decision variables. 
Meanwhile, computational graphs have also been adopted in transportation modeling, with Ma et al. (2020) 
formulating OD estimation problems as computational graphs, enabling scalable and efficient solutions through 
deep learning frameworks. Guarda & Qian (2024) further extended this approach to infer utility functions from 
traffic counts, speeds, and sociodemographic data, illustrating the versatility of computational graphs in 
transportation analytics. Additionally, some studies leveraged auto-differentiation and backpropagation techniques 
from machine learning for efficient optimizations. Du et al. (2025) introduced a fully differentiable end-to-end 
SBO framework with a differentiable metro system simulation model, using IB algorithm with auto-differentiation 
to efficiently calibrate passenger route choices in metro systems, showing capabilities of simultaneously 
optimizing for all passenger route choices between all OD pairs. This study is an extension of the fully 
differentiable SBO framework to DTA simulations for UE conditions on general transportation networks. 
2. METHODOLOGY 

2.1 Dynamic Traffic Assignment (DTA) Simulation for User Equilibrium (UE) Conditions as A 
Computational Graph 

In this study, the DTA simulation model is designed for approaching user equilibrium (UE) conditions by 
leveraging the method of successive averages (MSA) for iteratively updating the passenger stochastic route choices 
(SRC) based on route travel times from the previous iteration of simulation. To formulate the iterative DTA 
simulation model as a computational graph, all calculations must be fully differentiable with respect to the 
concerned parameters such as passenger route choice model parameters. Therefore, to ensure the differentiability, 
instead of recorded route travel times from the previous iteration, the updated route choices are based on the 
approximated link travel times from the simulated link flows, as discussed further in the following sections.  
 
The proposed iterative DTA simulation for UE is illustrated in Figure 1, designed in a computational graph 
structure. Firstly, from any randomly initialized feasible route choices (flows), the DTA simulation model is run to 
generate the time-dependent link flows and densities. Then, the link costs (travel times) are approximated with the 
link cost functions (such as BPR functions) based on time-dependent link flows or densities. Then, the auxiliary 
stochastic route choices of all passengers are generated as the Time Dependent Shortest Paths (TDSP) based on 
the approximated link costs. With the auxiliary route choices, the MSA interpolation is conducted to update the 
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passenger route choices towards the auxiliary route choices with a given step size 𝜆. Finally, check convergence, 
if not, repeat the first step to run the DTA simulation with current route choices. Since every step of the iterative 
DTA simulation framework is differentiable, the partial derivatives of the converged link flows with respect to any 
analytically tractable traffic parameters can be derived by the Iterative Backpropagation (IB) algorithm with auto-
differentiation. 

 
Figure 1. The Iterative DTA Simulation for UE Conditions as A Computational Graph. 

2.2 Differentiable Flow-Based Mesoscopic DTA Simulation 

To conduct the DTA simulation with given route choices and OD demands, this study proposes a differentiable 
flow-based mesoscopic DTA simulation model, where all processes are designed to be analytically tractable. In 
the simulation model, passengers or vehicles are simulated as continuous flow units instead of discreate agents. 
Each link is separated into two queues: the running queue and exiting queue, as shown in Figure 2. In the running 
queue, for each simulation time step, the flow units are moved forward by a distance calculated from the current 
link speed based on link density and free flow speed. Flow units which finish the link in the running queue would 
be sequentially moved to the exiting queue, waiting to be discharged when the next link has enough residual 
capacities. Signals are designed for each intersection, and various phase designs and timing plans are customizable. 
The sample pseudo code is provided in Algorithm 1. 
 

 
Figure 2. The Link-Intersection Structure in The Flow-Based Mesoscopic DTA Simulation Model. 

 
Algorithm 1. Differentiable Flow-Based Mesoscopic DTA Simulation 
𝑡 = 0  
FOR each origin node 𝑜: 

Generate new flow units to each destination 𝑑 
Split the flow units to different routes with a route choice model 
Move flow units to origin queues for different outward links accordingly 
IF the residual capacity 𝑐!" is still enough: 

Move each flow units to the running queue of the outward link 𝑙 
FOR each link 𝑙: 

Calculate link speed 𝑣!" by link density 𝜌!": 𝑣!" = 𝑣!
#$%% ∙ ,1 − &!

"

&!
#$%/ 

Move all flow units in the running queue forward accordingly: 𝑥',!" = 𝑥',!")* + 𝑣!" ∙ Δ𝑡 
FOR each flow unit in the running queue: 

IF it reaches the end of this link, move those do into the exiting queue 
FOR all flow units in the exiting queue: 

IF this flow unit arrives at the destination, remove it from the exiting queue 
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FOR each intersection 𝐼: 
Get the current allowed movements between links 
FOR each outward link 𝑙 of this intersection 𝐼: 

Calculate the residual capacity 𝑟!" of this out-link 
FOR each inward link 𝑘 among the allowed movements to this outward link 𝑙: 

Sum up flow unit volumes in the exiting queue IF next link as 𝑙 
IF summed flow volumes are smaller than 𝑟!", move these flow units from all inward links to the 
running queue of 𝑙 
ELSE equally distribute the capacity to all inward links, and move the first flow units in each inward 
link up to the divided capacity to the running queue of 𝑙 

𝑡 = 𝑡 + 1, go back to the second step 

2.3 Traffic Parameter Calibration with DTA Model by Iterative Backpropagation 

This section discusses the scenario of calibrating traffic models or passenger route choice model parameters with 
the proposed differentiable DTA simulation for UE as a computational graph. Here the fundamental diagram 
relationship between speed and density is adopted for link travel time approximations as Equation 1.  

𝑣 = 𝑣# ∙ ,1 −
𝜌

𝜌+,-
/ , 		𝑡 =

𝑙
𝑣 =

𝑙 ∙ 𝜌+,-
𝑣# ∙ (𝜌+,- − 𝜌)

 (1) 

Then, to enable the gradient-based optimization algorithm, analytical partial derivatives of the converged link 
flows for 𝒙𝒍,𝒕,𝑵 link 𝒍 at time interval 𝒕 after 𝑵 iterations are derived with respect to arbitrary parameters 𝜽, through 
the iterative simulations. Firstly, the MSA update of passenger route flows 𝒇𝒅,𝒕,𝒏𝒓  of OD pair 𝒅 starting from time 
interval 𝝉 in iteration 𝒏 is shown in Equation 2 with auxiliary route flows 𝒇𝒅,𝒕,𝒏

𝒓,∗  and predetermined step size 𝝀𝒏. 
Therefore, the converged route choices can be decomposed as Equation 3. 

𝑓5,6,'$ = 𝑓5,6,')*$ + 𝜆' ∙ E𝑓5,6,'
$,∗ − 𝑓5,6,')*$ F (2) 

𝑓5,6,7$ = 𝑓5,6,8$ +G𝛥𝑓5,6,'$
7

'9*

= 𝑓5,6,8$ +GI𝜆' ∙ E𝑓5,",'
$,∗ − 𝑓5,6,')*$ FJ

7

'9*

 (3) 

Meanwhile, as the initial route flows can be chosen arbitrarily, which are not relevant to the any parameters for 
calibration, the partial derivatives of initial route flows with respect to the parameters are zero: 

:#&,(,)
*

:;
= 0. Then, 

the partial derivatives of the path flow with respect to the parameters can be recursively derived as Equation 4. 
𝜕𝑓5,6,7$

𝜕𝜃 = 0 +G
𝜕𝛥𝑓5,6,'$

𝜕𝜃

7

'9*

=GM𝜆' ∙ N
𝜕𝑓5,6,'

$,∗

𝜕𝜃 −
𝜕𝑓5,6,')*$

𝜕𝜃 OP
7

'9*

= 𝜆7 ∙
𝜕𝑓5,6,7

$,∗

𝜕𝜃 −GM
𝜕𝑓5,6,'

$,∗

𝜕𝜃 ∙Q 𝜆+

7

+9'

P
7)*

'9*

= 2 ∙ 𝜆7 ∙
𝜕𝑓5,6,7

$,∗

𝜕𝜃 −GM
𝜕𝑓5,6,'

$,∗

𝜕𝜃 ∙ Q𝜆+

7

+9'

P
7

'9*

 

(4) 

Furthermore, after 𝑁 iterations, we denote 𝛿5,6,!,",7$ ∈ {0,1} as the indicator of whether the route flow unit 𝑓5,6,'$  is 
located at link 𝑙 in time interval 𝑡. Therefore, the converged link flow 𝑥!,",7 can be expressed as Equation 5. The 
iterative backpropagation (IB) algorithm with auto-differentiation can deal with if-else conditions with binary 
indicators, as long as the forward process (the simulation) has been conducted and the indicators are already 
determined. 

𝑥!,",7 =GG G 𝑓5,6,7$ 𝛿5,6,!,",7$

$∈=&56

 (5) 

Finally, the partial derivatives of the converged link flows are expressed as Equation 6. As the updated route 
choices are made based on approximated travel times from previous iterations, which are analytically tractable 

iteratively back to the link cost function parameters with link densities, 
:#&,(,+

*,∗

:;
 will be obtained by auto-

differentiation for parameters of both link cost functions and route choice models. 
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In practice, the parameters for calibration will be initialized randomly. With the given parameters, for each 
optimization iteration, the iterative DTA simulation for UE will be conducted until convergence, and the partial 
derivatives of the differences between simulated link flows and actual observations will be calculated by auto-
differentiation, for the gradient-based optimization algorithm to update the parameters for the next iteration of 



simulation, until the parameters converge. 
3. PRELIMINARY EXPERIMENTS 
To illustrate the capability of the proposed DTA simulation model in calibrating traffic parameters by minimizing 
the differences between simulation results and actual observations, preliminary experiments are conducted with 
the toy network in Figure 3. In the toy network, there are four nodes, five links and three OD pairs: AD, AC and 
BD. The simulation time is 1 hour, and link flows are recorded in time intervals of 10 minutes. For all links, the 
free flow speed 𝑣# is 15 Z+

>
[, the maximum link density 𝜌+,- is 1200 Z?%@

A+
[ and the passenger value of time 𝑉𝑂𝑇 

is 1000 ZBCD
@$
[. Simulations are run with these parameters to generate synthetic flows for validation optimizations.  

 
Figure 3. A Toy Network. 

 
Then, with the synthetic link flows as actual observations, starting from randomly initialized traffic parameters, 
the proposed DTA simulation model is run iteratively with the Adam optimizer minimizing the mean squared errors 
(MSE) between the simulated link flows and actual observations based on the gradients from auto-differentiation. 
Three calibration scenarios are practiced for illustration: calibrating for 𝜌+,-  only, 𝑉𝑂𝑇  only, 𝜌+,-  and 𝑉𝑂𝑇 
together. The optimization processes are shown in Figures 4(a), 4(b) and 4(c) respectively, where the MSEs are all 
stably decreasing, implying that the proposed framework with differentiable DTA simulation is potentially 
effective in calibrating traffic model parameters. 

 
Figure 4. Optimization Processes of Calibrating Traffic Parameters with The Proposed DTA Simulation Model. 

(a) 𝜌+,- only. (b) 𝑉𝑂𝑇 only. (c) 𝜌+,- and 𝑉𝑂𝑇 together. 
4. CONCLUSIONS 
This study proposes a differentiable mesoscopic DTA simulation framework that enables efficient gradient-based 
optimization through iterative backpropagation. User equilibrium conditions are approached by iterative DTA 
simulations with MSA of stochastic route choices (SRC). By approximating the route travel times by link travel 
times derived from the fundamental diagrams, the proposed DTA simulation model is fully differentiable and 
formulated as a computational graph. The gradients of simulated link flows with respect to the predetermined 
traffic parameters are preserved throughout simulation iterations. Preliminary experiments validate the capability 
of the proposed framework in calibrating traffic parameters with auto-differentiation and gradient-based 
optimization algorithms. Future research will refine the DTA simulation model, introduce various link travel time 
approximations and extend the proposed framework to large-scale networks for practical purposes. 
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1 INTRODUCTION

Highway bottlenecks exhibit complex and dynamic traffic conditions, where interactions between
upstream and downstream flows often lead to significant disruptions and traffic congestion. These
disruptions result from local perturbations, such as speed fluctuations and temporary slowdowns,
which can develop into unstable traffic states and propagate through the network. Understanding
traffic state vulnerability—the susceptibility of traffic flow to such perturbations—is critical for
improving network resilience and mitigating congestion. Previous studies have explored traffic
state transitions at bottlenecks, particularly the impact of on-ramp merging and lane-changing
activity on flow stability (Yeo, 2008, Ahn et al., 2010, Oh & Yeo, 2012). However, a robust
method for quantifying traffic vulnerability based on system stability remains an open challenge.

Recent studies have approached traffic vulnerability assessment from different perspectives.
Complex network theory and cloud models have been used to evaluate congestion-induced vul-
nerabilities, identifying critical road segments based on uncertainty in traffic states (Deng et al.,
2020). Additionally, vulnerabilities in connected transportation networks have been examined,
particularly focusing on the cascading effects of cybersecurity threats and disruptions in intelli-
gent transportation systems (ITS) (Hou et al., 2019). Graph-theoretic approaches have also been
applied to assess network capacity in emergency evacuation scenarios, identifying locations that
restrict flow under extreme conditions (Ohi & Kim, 2021). While these studies provide valuable
insights into network-level vulnerabilities, they primarily focus on static congestion metrics, net-
work topology, and external risk factors, rather than capturing the dynamical evolution of traffic
instabilities over time.

Traffic state vulnerability is inherently a dynamical problem, as speed fluctuations and density
variations can propagate through the network, amplifying congestion beyond localized bottle-
necks. Existing approaches often overlook the temporal evolution of traffic instability, limiting
their ability to predict when and how disruptions escalate into system-wide congestion. To ad-
dress this gap, this study employs the largest Lyapunov exponent (LLE) to quantify short-term
and long-term vulnerability by assessing the sensitivity of traffic flow to small disturbances over
time. Unlike conventional network-based assessments, this approach evaluates whether a traffic
state stabilizes or remains unstable, providing deeper insights into traffic resilience at highway
bottlenecks.
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This study applies LLE-based analysis to a highway bottleneck segment, reconstructing the
state space to analyze traffic flow stability under different perturbation conditions. The analysis
offers a systematic method to quantify vulnerability, helping identify critical traffic conditions
that are more prone to sustained instability. The paper is organized as follows: the methodology
outlines state-space reconstruction and Lyapunov exponent estimation, the results provide a
comparative statistical analysis of traffic vulnerability, and the conclusion discusses implications
for network resilience and future research directions.

2 METHODOLOGY

The Lyapunov exponent quantifies the exponential divergence of initially close state-space tra-
jectories, providing a measure of chaos within a system (Rosenstein et al., 1993). The use of
LLE to assess local dynamical stability has been applied to transportation systems (Lan et al.,
2008, Liu & Zhang, 2016).

Suppose traffic data is collected from loop detectors N on the highway at timestamp t as
xt ∈ RN , with the complete dataset spanning T timestamps represented as X1:T = [x1, · · · ,xT ] ∈
RN×T . In this study, we define the finite-time traffic state xt as the lane-aggregated traffic speed,
as it directly reflects the degree of congestion and disruptions. To reconstruct an appropriate
state space from this single time series, we use the original data along with its time-delayed
copies, as shown below (see Takens (2006) for more details):

Y (i) = [xt,xt+τ , . . . ,xt+(de−1)τ ] (1)

where Y (i) is the a point in the reconstructed phase space from the delay time τ , and the
embedding dimension de. The number of points in de-dimensional subspace is i = T − (de− 1)τ .
To compute the Lyapunov exponent, the nearest neighbor points in the reconstructed phase
space are identified for each trajectory at the initial condition:

j = argmin
j ̸=i

∥Y (i)− Y (j)∥,

Li = log

(
∥Y (i+ n)− Y (j + n)∥

∥Y (i)− Y (j)∥

) (2)

Here, j represents the index of the nearest neighbor to Y (i), minimizing the Euclidean distance
between them while excluding Y (i) itself. Each Li measures the logarithmic divergence between
the trajectories beginning at Y (i) and its nearest neighbor Y (j) after n time steps. The LLE
can then be estimated by analyzing the average divergence rate of these closest neighbors as the
slope of the divergence curve:

λi =
1

τ

(
1

N

N∑
i=1

Li

)
(3)

where λ quantifies the average exponential separation rate between trajectories of nearest neigh-
bors in phase space, capturing the system’s sensitivity to initial conditions. If the λ > 0, the
system is unstable and exhibits chaotic behavior, with its magnitude reflecting sensitivity to
initial conditions. If the λ < 0, the system converges to a stable fixed point.

3 PRELIMINARY RESULTS

The proposed methodology is applied to a 2.2 km stretch of SR-91 in California, a freeway
segment prone to congestion during morning rush hours. The dataset, collected from PeMS,
includes speed and flow measurements at 5-minute intervals between 6:00 AM and 11:00 PM from
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Figure 1 – (a), (d) Aggregated speed over time on March 4, and March 19, 2019, respectively,
illustrating temporal variations in traffic speed; (b),(e) State space reconstruction for different
speed (τ=3, de=4); and (c), (f) Short-term (λ∗

s), long-term (λ∗
l )), and overall LLEs over time,

providing a quantitative assessment of local traffic stability.

March 1 to September 30, 2019. The analysis focuses on identifying traffic state vulnerability
using the Lyapunov exponent-based stability framework.

Figure 1 illustrates the speed fluctuations and the impact of initial perturbations (traf-
fic breakdowns) on the upstream detector segment, analyzed using the proposed Lyapunov
exponent-based stability framework. On March 4, 2019, significant speed fluctuations were
observed between 6:00 AM and 9:00 AM, indicating instability. The state-space reconstruction
(Figure 1(b)) reflects these perturbations, showing a dynamically evolving phase-space trajectory.
The short-term LLE (λ∗

s) measures immediate sensitivity to disturbances, while the long-term
LLE (λ∗

l ) provides insight into whether the system stabilizes over time. On March 4, 2019, the
short-term LLE was 0.0416, indicating initial chaotic behavior. However, as time progressed, the
long-term LLE reached -0.0230, signifying that the system eventually regained stability.

On March 19, 2019, however, speed fluctuations persisted throughout the day, with pro-
nounced afternoon perturbations (Figure 1d). The short-term LLE (λ∗

s) was 0.1041, indicating
greater sensitivity to disturbances and the long-term LLE (λ∗

l ) remained close to 0.0021, sug-
gesting that the system did not fully stabilize. These findings highlight the variability in traffic
state transitions, where some disturbances dissipate over time, while others sustain prolonged
instability, impacting network performance.

4 DISCUSSION

This study evaluates traffic state vulnerability at a highway bottleneck using Lyapunov exponent-
based stability analysis, focusing on short-term and long-term impacts of speed fluctuations. The
findings suggest that traffic instability depends on the severity and persistence of perturbations,
with higher short-term LLE values indicating greater immediate instability. While some dis-
ruptions naturally stabilize over time, others remain prolonged, emphasizing the need for a
quantitative framework to assess vulnerability at a macroscopic level.
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Future research could expand the Lyapunov exponent framework by expanding the anal-
ysis to network-wide traffic flow instability, capturing how local disruptions propagate across
the system. Additionally, incorporating merging activity analysis and integrating microscopic
perspectives will improve sensitivity to local perturbations and strengthen traffic vulnerability
assessments. By refining these methodologies, this framework can contribute to more effective
traffic management strategies, supporting intelligent transportation systems and improving net-
work resilience against recurrent congestion.
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This research addresses the dynamic traffic assignment problem (DTA) within the context of 

user equilibrium. In most existing DTA models, time-varying flows - either path flows or link 
flows - are fundamental variables iteratively adjusted through a reassignment procedure in the 
solution algorithms. Link travel time costs, including link cruising time and queuing delays, are 
computed through a dynamic network loading (DNL) process based on these flows. Although link 
and path travel times are critical for adjusting flows, they are subordinate quantities determined 
from flow data by the physical mechanisms of the loading model. Using the current flow data and 
these subordinately determined travel times, flows are adjusted with appropriate reassignment 
algorithms. Exceptions to the above typical formulation can be found in the works of Ran and 
Boyce (1996) and Long et al. (2016). Ran and Boyce developed a link-time-based algorithm, 
where link times serve as fundamental variables iteratively adjusted. Long et al. use path travel 
times as the fundamental variables. 

Another common feature often shared by DTA algorithms is the discretization of the time 
axis, which serves as the basis for traffic propagation, into small intervals. While some DTA 
models are inherently designed with discrete time intervals, others are initially formulated in a 
continuous-time framework. Although the continuous-time formulation provides a theoretically 
rigorous basis, time discretization becomes essential for numerical computation when applied to 
complex real-world networks. In this process, both traffic flows and travel times are defined 
over discrete time intervals. With cellular transmission model (CTM) being an exception, most 
dynamic flow models assume continuous travel times consistent with the underlying continuous 
traffic propagation physics. The dependency of continuous traffic propagation and travel times 
on discrete time intervals complicates the existing DAT algorithms in these models.  

The aforementioned works by Ran and Boyce (1996) and Long et al. (2016) are also 
grounded in this framework of time-discretization. In such a framework, the link or path time-
based formulation offers clarity in model formulation but seems to have limited algorithmic 
advantages compared to flow-based formulations.  

Another noticeable exception can be found in Kuwahara and Akamatsu (1993) and 
Akamatsu (2001), where DTA for networks with special structures is addressed. For the case 
with a single origin, the traffic propagation spreading to the remaining nodes is depicted on the 



departure time axis at the unique origin. Link flows and earliest node arrival times are 
sequentially calculated by incrementing the departure time steps from an initial state, without 
the need to discretize the travel time axis. Analogous formulation applies to a network with a 
single destination, but not easily to general networks.   

 
In this paper, we propose a link-time-based method in a semi-discretized framework for 

dynamic traffic assignment. The method adopts link travel times as the fundamental variables to 
be directly adjusted, with flows treated as subordinate variables. This method does not need path 
enumeration. Moreover, the method is semi-discretized in the sense that only the arrival time 
horizon is discretized, while the time axis for traffic propagation remains continuous variables. 
These features together enhance greatly the ease of implementation of the proposed method.  

Specifically, we address the problem of simultaneous route and arrival time choice (SRAT) 
during the morning peak traffic period. The time horizon for traffic arrivals is divided into 
discrete intervals, with one interval designated as the most desirable. Penalties for early and late 
arrivals are pre-specified for all other intervals. Travelers choose routes and arrival time 
intervals based on the sum of travel time costs and penalties, following a nested logit type 
random choice model. Departure time is then determined by the target arrival time and the 
average route travel time. As a result, our formulation is equivalent to a simultaneous route and 
departure time choice (SRDT) model.  
 
Arrival time choice 

Consider a network consisting of a set of links 𝒜 = {𝑎, 𝑏, … } and a set of nodes 𝒩 =
{𝑖, 𝑗, … }. Let {𝑄!"} denote the set of OD demands. (The ranges for indices, when easily identified 
from the context, will be omitted.) All travelers arrive at their destinations during a time horizon 
discretized into 𝑀  intervals: [𝑇#$%, 𝑇#] , 1 ≤ 𝜏 ≤ 𝑀 . In the following 𝜏  also denotes the 
interval [𝑇#$%, 𝑇#]. The travelers desire to arrive at their destination at a common time interval 
𝜏&, incur a penalty for early or late arrival denoted by a function 𝐸𝐿(𝜏), where 𝜏 is the actual 
arrival time interval.  

Let 𝑆!"#  be the expected minimum travel time cost from 𝑟 arriving at 𝑠 at time 𝜏. The 
travelers choose their arrival time 𝜏 by the aggregated cost 𝑆!"# + 𝐸𝐿(𝜏), obeying a logit model. 
Let 𝑞!"#  denote the travel demand from 𝑟 arriving at 𝑠 at time 𝜏. The vector 𝒒 = {𝑞!"# } is thus 
a function of 𝑺 = {𝑆!"# }.  

 
Link-time-based model 

On a link 𝑎, travelers with a common destination 𝑠 and a common scheduled arrival time 
𝜏, wherever they come from, are assumed to enter and leave the link at a same time and incur a 



common link travel time cost 𝑡'#". Let 𝑥'#" denote the volume of these travelers, which will also 
referred to as a platoon in the following.  

Now suppose that 𝒕 = {𝑡'#"} is given. Assume that travelers determine their routes according 
to a logit type random choice model. The vector of link flows 𝒙 = {𝑥'#"} can then be written as 

a function	 𝒙 D𝒕, 𝒒E𝑺(𝒕)FG of 𝒕.  

The time 𝑇'#" for the platoon 𝑥'#" to enter the link 𝑎 can be computed from 𝒕. The vector 
H𝑥'#

!"! , 𝑇'#
!"!I#!"!, comprising information of the magnitudes and entry times of all the platoons 

that traverse a link 𝑎, characterizes the temporal profile of traffics on the link. We assume that 
this vector determines the traversal time of each platoon on the link, denoted by the function  

𝛤'#"H𝑥'#
!"! , 𝑇'#

!"!I#!"! 		 
Combining the above equations, we have the following diagram depicting the relationship 

between link travel times and the other variables 
{𝑡'#"	}                 {𝑇'#"	}     

   
 

{𝑆!"# 	}       {𝑞!"# 	}      {𝑥'#"	}       {𝛤'#"	}     

Thus, the above diagram defines a map from the cube [0, 𝐿](×|𝒜|×|𝒩| into itself, which can 
be written as 

																																																				𝒕 → 𝜞 N𝒙 D𝒕, 𝒒E𝑺(𝒕)FG , 𝑻(𝒕)P																																																										 

A fixed point of the map characterizes an equilibrium for the simultaneous arrival time and route 
choice dynamic traffic assignment problem. It is easy to verify that there exists an equilibrium if 
the link travel cost functions 𝛤'#"H𝑥'#

!"! , 𝑇'#
!"!I#!"! are continuous in 𝑥'#

!"! and 𝑇'#
!"!. A heuristic 

algorithm of the form, with step size 𝛼 which may depend on the times of iterations, 
𝑡'#" → (1 − 𝛼)𝑡'#"+𝛼𝛤'#" 

can be adopted to compute the equilibrium.  
 
Link Travel Time Functions 
 Several models for the function 𝛤'#"H𝑥'#

!"! , 𝑇'#
!"!I#!"! can be easily incorporated into the 

proposed method. (i) the point queue model; (ii) the congestible capacitated BPR type link time 
function (see Bliemer et al. 2013 for a discussion of related models); (iii) weighted-flow model 
which modifies BPR functions by taking into account the strength of interference between 
traffics in accordance with their entry time differences: 

	𝛤'#" = 𝛾'(𝑋'#") = 𝛾' UV𝑥'#
!"!

#!"!
𝑔#!"!
#" X	 



where 𝛾' is a macroscopic function and 𝑔#!"!
#"  are weights expressing the strength of influences 

of traffic destined for 𝑠- to that destined for 𝑠, which depend on 𝑻(𝒕). Models (ii) and (iii), 
referred to as queue and weighted-flow models, are adopted in the following case study. 
 
Case study 

The method was implemented for the road network of Gifu City, Japan, with about 394 
thousand population. The study area is composed of 38 zones, covering Gifu city and 
surrounding smaller cities and towns, with a network of 762 links. The OD consists of 
commuting and free activity and business trips, with data available from the 2011 PT survey. We 
assume that during the morning 4 hours from 6:00 to 10:00, all the commuting trips and 40% of 
the free and business trips are finished. The arrival time horizon is discretized into 𝑇 = 96 
time intervals, each with a length of 2.5	𝑚𝑖𝑛𝑢𝑡𝑒. The most desirable arrival time interval is 
[7: 57: 30, 8: 00], for all the trips. The costs of early and late arrivals for the commuting trips are 
set at 0.18 and 0.12 times the travel time cost, respectively. For the free and business trips, they 
are set at 0.15 and 0.015 times the travel time cost, respectively. These parameters differ largely 
from those suggested for individual commuters (Small 1982), reflecting the variation of target 
arrival times. The queue and the weighted-flow link cost function models build on BPR 

functions calibrated for roads in Japan. 
The link capacities (car/minute) for the 
queuing model and the weighted flow 
macroscopic model are set at 1/630 and 
1/63 of the daily capacity, respectively. In 
the left figure is shown the profiles of 
arrival rates during the study periods for 
the aggregated trips, calculated by the 
weighted flow model, the queuing model, 

along with the observed real data, respectively.  
In the right figure, the computed link 

traffic profiles are compared with the real 
observed data, for a main bridge 
connecting the north and south parts of 
Gifu. The computed flows exiting the 
corresponding links are aggregated into 5-
minute intervals, matching the time 
periods used for collecting real traffic data. 
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Findings  
Our approach may be viewed as a mild modification of static models (e.g., Ying and Miyagi 

2001) which inherits much of knowledge and experience accumulated in the practice of 
applying static models. For example, the calibration of the BPR functions has been intensively 
conducted to fit the cases in different countries and regions. The case study shows that the 
adoption of the BPR functions widely applied in Japan may yield reasonable results in the 
dynamic context. The computed arrival rates and traffic profiles in important links fit reasonably 
well with the real data. We think that the accuracy of the model can be further improved by a 
refinement of link performance functions considering the types of roads, distribution of traffic 
signals, and general network structure.  

On the other hand, detailed traffic dynamics, including physical queues and spill backs, are 
not addressed in this paper. Extending our method to address these issues is a challenging yet 
interesting topic.  
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1 INTRODUCTION
In the framework of Dynamic User Equilibrium (DUE), each traveler seeks to minimize individual travel time, whereas,
under Dynamic System Optimal (DSO), the objective is to minimize the total travel time or overall system cost (Wardrop,
1952; Sheffi, 1985). Nonetheless, in extensive and congested networks, employing fully detailed Dynamic Traffic Assign-
ment (DTA) models can become computationally prohibitive. Consequently, aggregated models, such as those derived from
the Macroscopic Fundamental Diagram (MFD) (Daganzo, 2007), have been developed to encapsulate essential dynamics at
the regional level. Within each region i in a city or metropolitan area, dynamics are characterized by a singular accumula-
tion Ni and corresponding supply/demand functions Σi(Ni), ∆i(Ni).. In simulation-based DTA, a Dynamic System Optimal
(DSO) state is achieved when the total travel time of the system cannot be further reduced by changing the routes selected
by travellers. The emulation of dynamic network equilibria in large-scale networks presents numerous challenges, as previ-
ously discussed in existing literature (see e.g. Ameli et al., 2020, 2022). Solving the DUE or DSO problems necessitates the
determination of the global solution to a constrained convex optimization problem (Sheffi, 1985), with the DSO specifically
requiring the computation of marginal travel times (see e.g. Ameli et al., 2024). Although MFD-based DTA models can
substantially decrease the state space, resolving the DSO remains complex. Many methodologies rely on the approximation
of marginal costs or employ the classical method (see e.g. Peeta & Mahmassani, 1995; Yildirimoglu & Kahraman, 2018).

Although MFD-based DTA can significantly reduce the state space, solving the DSO remains non-trivial. Many ap-
proaches rely on approximating marginal costs or the classical method of successive averages (MSA) to find approximate
solutions (Yildirimoglu et al., 2015; Batista & Leclercq, 2019). Yildirimoglu et al. (2015) discussed a perimeter control
framework with route guidance that targets the DSO conditions of the regional network. The authors determined the network
equilibrium using the MSA and considered the calculation of the marginal travel times. Aghamohammadi & Laval (2020)
provides a review of the application of dynamic traffic assignment models with MFD-based traffic models. The development
of simulation-based dynamic traffic assignment models for regional networks is important not only for the design of traffic
management strategies but also for setting environmental policies to name a few examples as evidenced in the review work
done by (Johari et al., 2021). In this regard, a suitable framework for emulating simulation-based DSO without the necessity
to compute approximated path marginals remains absent in the literature. This paper aims to fill this gap. Therefore, in this
work, we outline a projection-based solution algorithm for the DSO that avoids explicit marginal-time calculations. We
aim to handle time-varying demand, desired arrival times, and region-to-region path flows within a dynamic simulation.

2 Regional Networks, MFD Dynamics, and DSO formulation
We represent a city as a regional network G = (R,U), where each node r ∈ R represents a region, and an edge (i, j) ∈ U
indicates that travel is possible from region i to region j. Any region can be labelled as origin (O), destination (D), or
intermediate (J), depending on its role in the trips under study. When a traveler moves from i to j, we write j ∈ Γ+(i) (so
i ∈ Γ−( j) as well). Each ordered sequence of travelled regions from O to D constitutes a path in the regional network. At
time t ∈ [0,T ], the demand of vehicles going from O to D with a desired arrival time ta is represented by ∆OD,ta(t). The total
demand of that group is given and the departure times satisfy :

∆
OD,ta
tot =

∫
Td

∆OD,ta(t) dt, where ∆OD,ta(t) ≥ 0 and Td ⊆ [0,T ]. (1)

In this network, each region i has an associated accumulation Ni(t) (total number of vehicles in region i at time t). By
summing over all destinations D and desired times ta, one obtains

Ni(t) =
∑
D∈D

∑
ta∈Ta

ND,ta
i (t). (2)

1



To capture congestion effects, each region i is associated with a Macroscopic Fundamental Diagram (MFD), providing a pair
of functions ∆i(·) (demand) and Σi(·) (supply), each depending on Ni(t). In particular,

δi(t) = ∆i
(
Ni(t)
)
, σi(t) = Σi

(
Ni(t)
)
.

When i is an origin region, it can be treated as a buffer zone: the buffer dynamics allow a certain inflow of new demand
∆OD,ta(t), while outflow is bounded by downstream supply. In the special case of a destination region D, the MFD requires
only an exit supply constraint, often denoted σD. To update flows in each region, the methodology proceeds in three loops:
(i) computing the supply and demand for every region based on its current accumulation; (ii) determining inflows (qi j(t)) by
matching demand from region i to supply from region j; and (iii) applying conservation of vehicles to update the state Ni(t).
The flow into region j from i at time t can be calculated by a simple model such as

qi j(t) = min
{
δi j(t), σi j(t)

}
,

where δi j is the partial demand (the share of δi wanting to go to j) and σi j is the partial supply (the share of σ j allocated
to traffic arriving from i). One can also employ a more general flow-optimization approach (using KKT conditions) if the
invariance principle must be satisfied. Finally, region accumulations evolve through first-order differential equations:

dNi

dt
(t) =

∑
ℓ∈Γ−(i)

qℓi(t) −
∑

j∈Γ+(i)

qi j(t),

and similarly for each disaggregate class ND,ta
i (t). By coupling these equations with the MFD relations and the definitions of

outflows from origins (or inflows to destinations), the model captures the time evolution of traffic at the regional level in a
consistent manner.

After defining how flows and accumulations evolve under MFD dynamics, we introduce a DSO formulation that seeks to
minimize the total cost of travel while respecting regional supply/demand constraints. Concretely, we define the system state
as all accumulations {ND,ta

i (t)} grouped into a vector N(t). The control (or decision) variables consist of the time-dependent
inflows and path-split fractions, denoted by ∆D,ta

O (t) (the departure rate from origin O) and γD,ta
i j (t) (the fraction of traffic in

region i headed to region j, with destination D and desired arrival ta). The DSO is then posed as an optimal control problem
of the form

min
∫ t f

0

[
c .N(t) +

∑
ta∈Ta

Qta(N(t), γ(t)
)
L(ta, t)

]
dt + 1

2 µ
(
N(t f )

)2, (3)

where c .N(t) represents the total time spent in the network, the sum term captures possible early/late arrival penalties re-
sulting from the network outflows Qta(N(t), γ(t)

)
and the unit penalty L(ta, t), and a terminal term 1

2 µ (N(t f ))2 penalizes any
remaining vehicles at final time t f . Subject to network and MFD constraints.

Gradient-Based DSO with Adjoint States and Projections

To solve the Dynamic System Optimum (DSO) problem, we employ a gradient (optimal control) methodology in discrete
time. Let k = 0, . . . ,K denote the time steps. Denote the state variables by Nk, which include both the total number of vehicles
in each region i and the more disaggregated numbers ND,ta

i . Denote the control (or decision) variables by βk ≡ (γk,∆k), which
gather the path-split fractions γD,ta

i j (k) and the origin departures ∆D,ta
O (k). Our objective function (the discretized version of

the total cost) is

J
(
{βk}
)
=

K−1∑
k=0

gk
(
Nk, βk

)
+ gK(NK),

where each gk is the time-k contribution to the cost (e.g., travel time plus schedule penalties), and gK is a terminal criterion.

Calculation of the Partial Derivatives This section discusses how we calculate the gradient for solving the previous
optimal control formulation. Considering that the initial state is given, the criterion can be viewed as a function of the
decision variables only. We consider the time steps k = 0, · · · ,K. Furthermore, we simplify some notation to derive the
gradient of the criterion concerning the decision variables in a discrete-time setting.

Let us start by introducing some notation. We define: Nk as the state in the time step k; βk as the command at time
step k (βk = (γk,∆k)); gk(Nk, βk) as the contribution of the time step k to the criterion; and gk(Nk) as the terminal criterion.
Therefore:

2



gk(Nk, βk) =
[
c · Nk +

∑
ta∈Ta

s · Qta(Nk, βk) · L(ta, k · ∆t)
]
× ∆t ∀k = 0..K − 1 (4)

gK(NK) =
1
2
· NK · µ · NK (5)

Nk+1 = E(Nk, βk) ∀k = 0..K − 1 (6)

Nk+1 = Nk + ∆t · F(Nk, βk) (7)

i.e.:

E(Nk, βk) = ∆t · F(Nk, βk) + Nk ∀k = 0..K − 1 (8)

Equations 6, 7, 8 constitute the discretized state equations of the system.
We define J as the discretized version of the criterion:

J def
=

K−1∑
k=0

gk(Nk, βk) + gK(NK) (9)

The generic calculation of the derivatives of J concerning β, i.e. ∂βK−1 J and ∂βk J. First note that Nh depends on βk if and
only if h > k. More precisely the following apply

∂βk Nk+1 = ∂βk Ek

∂βk Nh+1 = ∂Nh Eh · ∂βk Nh ∀h > k
(10)

Second, for all k:

∂βk J = ∂βk gk +

K−1∑
h=k+1

∂Nhgh · ∂βk Nh + ∂NK gK · ∂βh NK (11)

and the iterative calculation of the derivatives of J concerning βk follows:

∂βK−1 J = ∂βK−1gK−1 + ∂NK gK · ∂βK−1 EK−1

∂βk J = ∂βk gk +
∑K

h=k+1 ∂Nhgh · ∂Nh−1 Eh−1 · . . . · ∂Nk+1 Ek+1 · ∂βk Ek ∀k < K
(12)

Thus let us introduce the adjoint state Υ:ΥK = ∂NK gK

Υk = ∂Nk gk + Υk+1 · ∂Nk Ek, k = K − 1, · · · , 0
(13)

and the gradient of J is expressed as:

∂βk J = ∂βk gk + Υk+1 · ∂βk Ek, k = 0, . . . ,K (14)

Actually, given that the set of constraints applied to β is convex, the discrete-time minimum principle applies. We will
not apply this approach here.

Projected Gradient Update. Finally, we perform an update of the control variables in the negative gradient direction:

β(τ+1)
k = P

[
β(τ)

k − α(τ) ∂βk J
(
β(τ))],

where P is the projection operator that enforces nonnegativity, simplex constraints, and total demand constraints. In practice,
these subproblems (simplex and demand projection) can be solved with rank-based cut values, ensuring that the computa-
tional cost remains modest for each iteration. In particular, each of these projection subproblems can be solved in O(K log K)
time per region or OD class, using cut-value searching. Hence, despite the complexity of the overall DSO, the gradient steps
remain computationally tractable when combined with the MFD-based region-state updates.

3



3 Numerical Proof of Concept
We implement the above framework on a synthetic four-region network. Each region has a basic triangular MFD with known
critical density. We consider multiple destination classes and desired arrival times. The simulation runs from t = 0 to t = T ,
after which no new inflow arrives, but vehicles may still clear the network. Each iteration of the solution updates:

1. Forward simulation: compute demands/supplies and flows for each region via the MFD loops.

2. Backward pass: compute the adjoint Υk needed for ∂βJ.

3. Projection step: update γD,ta
i j and ∆D,ta

O under simplex constraints.

The objective function (total time spent plus schedule penalties) decreases steadily until numerical convergence. The results
confirm that we reach the global optimum, matching a reference solution obtained via a small-scale enumerative check. CPU
times remain reasonable, illustrating the feasibility of this approach for medium-sized networks.
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1 Introduction

In rural areas and suburbs, the low density of transport demand often prevents the development
of conventional public transport services or causes operators to withdraw. These areas have
become public transport blank areas, leading to an increasing dependence on private cars. Elderly
people, children, and mobility-impaired people who cannot use private cars are forced to suffer
the inconvenience of restricted freedom of movement.

One way to ensure local transport in such circumstances is to share and make use of transport
resources such as vehicles and drivers, which incur fixed costs, among local residents. Since these
limited resources can be effectively utilised by multiple users by sharing them, it is expected
that a public transport service can be provided to the community at a lower operating cost than
conventional public transport. In this study, this type of public transport, in which resources
are shared in the community, is named community-owned shared transport (CST).

One of the issues in operating CST is to establish a fair system for sharing the cost of securing
transport resources. One such system is the average cost system, in which the residents who use
the CST share the operating costs equally. As each individual can decide whether or not to
use the CST independently, and as the operating costs of the CST are shared equally, there is
no need for special consensus-building efforts. On the other hand, the most important issue in
continuing to operate this type of CST is that if a sufficient number of subscribers cannot be
obtained, each subscriber will be charged an excessive fee, and as a result, the number of CST
users will decrease. This problem is particularly problematic in the early stages of introducing a
CST with a small number of subscribers. In this case, the fixed costs of the CST will be covered
by a small number of subscribers, and the high subscription fee will make the CST less attractive
to potential subscribers.

In this study, we propose a measure to increase the attractiveness of CSTs in the early stages
of introduction by providing an incentive to set up a meeting point (MP) in front of one’s home
by signing up early. In general, in shared mobility services such as CSTs, restricting the number
of meeting points increases the efficiency of the service. By using such restrictions, we can expect
not only an increase in efficiency but also an effect on promoting the spread of CSTs in the early
stages of introduction as an incentive for early subscription. The effect of this incentive can be
evaluated by constructing a day-to-day dynamic model that describes the diffusion of CST and
assessing where the dynamics converge with and without the incentive. When the initial number
of subscribers is set to zero, there are two possible outcomes of this dynamic: (1) the number
of subscribers increases and the subscription fee per subscriber becomes lower, making the CST
attractive to many people and stabilising at a high number of CST users. (2) The number of
subscribers does not increase and the subscription fee per subscriber is too high, so no one uses
CST. It is theoretically predicted that (2) will occur in the absence of incentives, and (1) will
occur in the presence of incentives. However, this is only a theoretical prediction. Actual users
may behave differently, and as a result, the outcome may differ from the above prediction.

To investigate the day-to-day diffusion dynamics with and without the incentive, we conduct
a laboratory experiment simulating a CST. Laboratory experiments are a well-known technique
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in experimental economics, but they are also a common tool in transport science (Dixit et al.,
2017). It has the advantage that it can be carried out at a much lower cost than experiments
using real-world transport systems, and that the experimental conditions can be freely controlled.
This paper reports on the day-to-day dynamics of the behaviour adjustment process observed in
these indoor experiments, and analyses how the results match and differ from the theoretically
predicted dynamics.

2 Methodology

2.1 Overview of the experiment

The experiment was conducted using a web-based system constructed using the online experi-
mental platform oTree Chen et al. (2016). The experiments were conducted for 3 days on 19th,
20th and 21st December 2024 at the campus on Tohoku University. The participants were as-
sembled in a single room and a desktop computer equipped in the room was assingned to each
of them. The conversation among the participants was forbidden. On each day, 10 sessions of
the experiment were conducted with different conditions. It was repeated for 3 days in total of
30 sessions. The participants were recruited among students of Tohoku University. The fixed
reward was paid for each participant. In total, 49 people joined the experiments, 17 people on
the first day, 16 people on the second day and 16 people on the third day. The experiments
were conducted with the approval of the research ethics committee of the Graduate School of
Information Science and Technology, Tohoku University.

2.2 Experiment settings

For this experiment, we considered a residential area without access to public transport. The
players were assumed to reside in this area without access to a private car. The scenario was set
during the first eight weeks following the introduction of a community-owned shared transport
(CST) service. The CST was designed to operate using designated meeting points (MPs), where
users could be picked up and dropped off. In this experiment, the number of MPs was deliberately
set to be smaller than the number of players, and the travel cost from a participant’s home to
an MP was assumed to depend on the distance between the two.

Among the 10 experimental sessions, five were conducted with an incentive scheme in which
early subscribers had an MP located directly in front of their home. This allowed them to
maintain zero travel costs to reach the MP over time. Another set of sessions was conducted
without any incentives, where MP locations were predetermined. For each set of session with
and withou incentive scheme, the operating cost of the CST varied across five different levels,
ranging from 12,800 to 19,200 JPY, with each session featuring a different cost level. For sessions
with 17 participants, the cost was adjusted by a factor of 17/16 to maintain consistency.

For each session, players were asked to decide whether to subscribe to the CST, based on the
following rules:

• Players aimed to minimize their total transport costs over the eight-week period.
• They had the opportunity to decide whether to subscribe to the CST at the beginning of

each week, meaning each player had up to eight decision points during the experiment.
• Once a player subscribed to the CST, they were required to remain in the service for a

minimum contract period of three weeks, during which cancellation was not permitted.
• If a player declined CST subscription, they used an alternative transport mode.
• Locations of players’ homes were randomly assigned, and their alternative transport costs

were calculated based on these places. Their home locasionts remain consistent for the two
sessions that have the identical CST operation costs—one with an incentive scheme and
the other without.
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(a) Without incentive (b) With incentive

Figure 1 – Changes in the number of subscribers, 2nd day of experiment

The total operating cost of the CST, including maintenance and purchasing costs, was equally
shared among subscribers. Consequently, the weekly subscription fee was determined by dividing
the total CST operating cost by the number of subscribers for that week. If the number of
subscribers fell below a critical threshold, the CST service would cease operation for that week.
In such cases, subscribers were required to pay the minimum maintenance cost while using
alternative transport.

Players did not know the exact subscription fee in advance, as it fluctuated based on the
number of subscribers each week. However, they were provided with the following information
to aid their decision-making: 1) The total operational cost of the CST, 2) Subscription fees in
the previous week, 3) Alternative transport costs, 4) Travel cost to the nearest MP, and 5) The
minimum number of subscribers required for the CST to continue operating.

3 Experimental results

Figure 1 illustrates how the number of subscribers changes over eight weeks at five different levels
of CST operational cost, without the incentive scheme (left) and with the incentive scheme (right)
on the 2nd day of the experiment. Regardless of the incentive scheme, all participants eventually
subscribed to CST when the operational cost was 6,400 JPY or 9,600 JPY. At an operational cost
of 12,800 JPY and 16,000 JPY, 75% of participants subscribed to CST. In the case of the highest
operational cost, there were no subscribers after eight weeks. Across all cases, some players joined
the CST even when there were only a few subscribers and the subscription cost was high. This
may be because they anticipated that the subscription cost would eventually decrease as the
number of subscribers increased. Once the system reached a stable state, players’ daily behavior
generally aligned with the theoretical assumption of short-sighted decision-making. With the
introduction of the incentive scheme, the number of subscribers reached equilibrium faster than
in the case without incentives. However, it did not affect the total number of subscribers.The
same trend was observed on other days as well

The experimental results also demonstrated the theoretically predicted dynamics of conver-
gence to a closer stable equilibrium solution following an unstable equilibrium. Figure 2 shows
the cost of using CST (y-axis) versus the number of subscribers (x-axis), represented by the blue
line. It also depicts the user’s willingness to pay, defined as the difference between the cost of
alternative mode and the travel cost to to the MP, for each number of subscribers, represented
by the yellow line. The left-hand intersection of the two lines represents the unstable equilibrium
solution, while the right-hand intersection represents the stable equilibrium solution. The red
dotted line indicates the number of subscribers each week, and the red circle represents the cost
of using CST for that week, given the number of subscriber. The yellow and blue arrows at
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Figure 2 – Process of convergence to stable equilibrium solution. 3rd day of experiment, no
incentive, session with total cost of 12,800

the top of the figure illustrate the process of convergence to the stable equilibrium solution over
the eight-week period. As shown in the figure, the number of subscribers was initially below
the unstable equilibrium solution in the first week but gradually increased, surpassing the stable
equilibrium solution before eventually converging to it.

4 Conclusion

Under the conditions of this experiment, it is discovered that the results generally followed
theoretical predictions. It was observed that CST was adopted even when the total operational
cost was near the upper limit predicted by theory. Additionally, the incentive scheme was
found to increase the number of subscribers in the early stages. We have also conducted a
stated-preference survay and simulations based on this result, which will be explained at the
presentation.

Future research directions include developing a theoretical framework to explain the non-
myopic behavior observed in players during the initial weeks, constructing a user behavior model
that better reproduces the convergence to the equilibrium solution based on myopic decision-
making in later weeks, and investigating the impact of changes in conditions such as group size
and minimum subscription period.
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1 Introduction

In rural areas, demand for transport is low and dispersed, making conventional public transport
systems inefficient. In such regions, individuals who cannot use private vehicles, such as the
elderly and children, tend to experience limited mobility. On-demand shared mobility services
have the potential to serve as an effective alternative to traditional public transport. However,
concerns regarding profitability may discourage private operators from investing in such services.

In this study, we consider a community-operated, self-funded on-demand shared mobility
service (CST) as an alternative transport solution in such regions. We define CST as a means
of transport established by sharing mobility resources within a community, where the cost of
utilising these resources remains constant regardless of the number of users and does not vary
with patronage. We could expect that an autonomous shared vehicle (SAV) is particularly well-
suited for CST, as it eliminates driver wages, a major operational cost. Even if SAVs become
widely available, their costs may still be unaffordable for individuals. However, sharing an SAV
among community members could distribute these costs, making it a viable mobility solution.

One way to introduce CST in rural communities is through voluntary consensus-building
among residents. However, this approach involves high communication costs and is not straight-
forward. To promote CST without relying on voluntary consensus-building within the commu-
nity, it is necessary to devise an operational strategy that ensures CST adoption, even when
individual residents make independent decisions about participation. One example is the ap-
proach proposed by Nakao et al. (2025), which involves initially allowing operational deficits by
reducing fares and recovering the losses once CST adoption becomes widespread.

Nakao et al. (2025) formulated the CST adoption process using a Markov chain process model
to represent day-to-day dynamics and demonstrated its effectiveness under certain conditions
through numerical simulations. However, the implementation rules used in their simulations
were constructed in an ad hoc manner and they are not necessarily optimal. Therefore, there
is no guarantee of robustness in the solutions when the parameters change. Furthermore, it is
known to be difficult to assess the long-run dynamics of whether adopted CST can be sustained
over time through numerical experiments.

This study aims to comprehensively investigate the characteristics of a Markov-chain-based
model for the evolutionary process of CST using a mathematical approach, supplemented by
numerical methods where necessary. Specifically, the analysis focuses on the following aspects:

• Dynamics without policy interventions: Estimate transition probabilities between multiple
equilibrium states and perform sensitivity analyses on key parameters.

• Dynamics under fare-reduction policies: Evaluating the probability of successful adoption
of CST and assessing the overall financial balance of operational costs.

• Optimisation of fare reduction strategies: Formulating an optimisation problem to derive
the optimal fare reduction policy and proposing a method to obtain its solution.
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These insights are expected to enhance the practical effectiveness of the policy proposed by
Nakao et al. (2025) providing a theoretical foundation for designing more reliable and effective
strategies to promote CST adoption.

2 Methodology

In this study, we use a simplified model of the transport system proposed by Nakao et al. (2025),
which includes CST. We consider a region consisting of N residents indexed by integers i from 1
to N . Each resident makes one trip per day using either CST or an alternative transport mode.
If resident i chooses CST on day t, we define xi(t) = 1. If they use an alternative transport
mode, xi(t) = 0. The number of CST users on day t is given by:

x(t) =
N∑
i=1

xi(t).

The generalized transport cost of the alternative mode for the resident i is indicated as πi. The
total operating cost of CST is given as a positive constant denoted by C. The CST fare on day
t is defined as f(t), which is determined by a given fare policy. In the long run, the collected
fares must support the operating cost, which means:

lim
T→∞

1

T

T∑
t=1

{x(t)f(t)− C} ≥ 0,

which is preferably to be zero to maximise benefits of the residents. If daily income and cost
must always be in agreement, then for all t, the fare must satisfy:

x(t)f(t) = C

Once residents choose between CST and an alternative transport mode, they retain their choice
over days but occasionally update it. Let r(t) be the probability that a resident updates their
choice on day t. In the simplest case, r(t) is assumed to be constant over time, denoted by r in
this case. When resident i updates their choice on day t, the probability of choosing CST, pi,
follows the logit model:

pi =
exp(θ(f(t) + ρi))

exp(θ(f(t) + ρi)) + exp(θπi)
=

1

1 + exp(θ(πi − ρi − f(t)))

where θ is a logit parameter and ρi is an additive generalised travel cost of resident i, e.g. walking
cost to a nearest meeting point of the CST. The formulated model can be interpreted as a Markov
chain with xi(t) as the state variables.

To analyse the properties of the proposed model, we primarily use the following methods:

1. Continuous Approximation: Assuming N is sufficiently large and r(t) is small, we
derive a continuous approximation similar to the mean dynamics in Hofbauer & Sandholm
(2007). This leads to an ordinary differential equation formulation, making mathematical
analysis more tractable than the original Markov chain.

2. Simplified State Space: When pi is constant across all residents, individual differences
disappear, allowing the formulation of a Markov chain with x(t) as the state variable.
Alternatively, if pi takes only two distinct values, the model reduces to a Markov chain
with two state variables, making analytical treatment more feasible.

3. Stationary Distribution of the Markov Chain: If pi is constant, it is expected that
the stationary distribution can be derived analytically.
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4. Markov Chain Mixing Time (MCMT) Analysis: MCMT evaluates how quickly the
Markov chain converges to its stationary distribution. In this model, MCMT is expected
to reflect the transition speed between CST adoption and non-adoption states. We adopt
the methodologies proposed by Iryo et al. (2024) for assessing MCMT.

For the proposed model, MCMT represents the rate at which CST adoption shifts between
widespread use and limited adoption. If MCMT is sufficiently large, once CST adoption becomes
prevalent, it is expected to remain stable over time.

3 Current findings and future prospects for the presentation

We here present an example of results by numerical simulations. As an example of the fare-
reduction policies, we set a the maximum fare as a given constant, denoted by fmax, and an
exponential-smoothing strategy that defers the change of the fare over days. It is defined as:

f(t) =

min

{
(1− γ)f(t− 1) +

γC

x(t)
, fmax

}
if x(t) > 0

fmax if x(t) = 0
(1)

which gives a balanced fare if x(t) is positive and stable over days and C/x(t) ≤ fmax.
Selected results are shown in Figure 1, where we let N = 100, r(t) = r = 0.1, πi − ρi

be between 3.0 and 22.8. The daily income/loss is defined as x(t)f(t) − C and the cumulative
income/loss is defined as its summation since the first day. We can confirm that the debt cannot
be repaid if fmax is too low and the CST cannot be popularised if fmax is too high, while a
moderate fmax can lead the CST to a cost-neutral state in which the daily income/loss is zero
with a sufficient number of users.

Based on the findings in the preliminary results above, we plan to demonstrate the following
results in our presentation. We will use methods 1 and 2 for the first two items. We will
use methods 3 and 4 for the last two items. We will also investigate the dependence on r(t)
particularly for these two items.

A. Method for determining the optimal f(t): The f(t) calculated by exponential smoothing
has been successful in ensuring the use of CST while repaying the debt when fmax = 10.
However, looking at the results in Figure 1, cumulative income is largely positive. We
propose a method for determining f(t) that can make this zero. In addition, the maximum
value of cumulative loss during popularisation should be as small as possible. We also
propose a method for determining f(t) that achieves this.

B. Method for determining the optimal fmax when πi is unknown: If πi of all users are known,
the optimal fmax can be determined by a simulation. but such a situation is rare in the real
world. We propose a method for automatically searching for an appropriate fmax when πi
is unknown.

C. Calculating x(t) in the stationary distribution: This is useful when evaluating the number
of CST users based on their probability distribution. Moreover, if a stationary distribution
is obtained with two major peaks in both the state where the CST is not popular and the
state where it is popular, there is a possibility that even if the CST becomes popular, the
state will not be maintained for a long time. Knowing the stationary distribution is also
useful for detecting such situations.

D. Stability analysis using MCMT calculations: This is mainly carried out to evaluate the
stability of the state in which CST is popularised.
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Figure 1 – Results of the evolutionary processes with different fmax
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Abstract

Transit assignment models estimate the distribution of passenger demand over a public transportation
(PT) network. Schedule-based assignment models use a space-time graph to represent the timetable,
yet oftentimes assume that the arrival and departure times of services are known with certainty, i.e.,
deterministic. In practice, travelers in PT are faced with uncertainty regarding their travel and use
online information to adapt their decisions. This paper proposes a novel stochastic transit assignment
model, where the arrival and departure times of PT vehicles are modeled as random. Riders react to
and anticipate changing levels of information regarding arrivals and departures and crowding effects due
to the adaptive choice behavior of others. While passengers are en route, the uncertainty is gradually
realized and recourse decisions are made. As such, passenger route choice is modeled as a multi-stage
stochastic program, leading to random passengers flows. We formulate user equilibrium conditions for
networks with stochastic supply, and propose a stochastic variational inequality to efficiently find such
equilibrium flows. Numerical experiments in realistic networks reveal the differences with a deterministic
approach.

Keywords: Adaptive Route Choice, Transit assignment, Equilibrium, Public Transport

1 Introduction

Public transportation (PT) assignment models distribute passenger demand over a network, under
assumptions regarding choice behavior. Such models are often a ‘lower level’ in hierarchical optimization,
where a set of measures is evaluated while accounting for the behavioral responses of passengers to these
interventions (Eikenbroek et al., 2018). In this paper, we focus on schedule-based assignment models
using a timetable-based space-time graph. As noted by Kumar and Khani (2023), it is typically assumed
in these models that PT vehicles arrive and depart on time. Consequently, the underlying space-time
graph is deterministic, and passengers have thus full certainty regarding the feasibility of their travel. In
practice, there is quite some uncertainty with respect to the realization of a timetable, and perturbations
or events can lead to delayed arrivals and departures, which may eventually cause that passengers miss
their transfer. Typically, there is an imbalance between information and decisions. Travelers have to
make a share of their decisions before all information is available. During the travel, the uncertainty
is dynamically revealed and passengers make recourse decisions in response to new information. This
is either because they have to, e.g., if they have missed or are going to miss a transfer, or because
they want to, if the intended path has become sub-optimal conditional on the information available.
Hence, assignment models should consider both the a priori choices of passengers, but also their en-route
adaptations (cf. Hall, 1986).

Various studies have aimed at capturing the adaptive choice behavior of passengers in assignment
models. Recently, Kumar and Khani (2023) proposed a schedule-based uncapacitated and capacitated
assignment where passengers are modeled as expected-cost minimizers, utilizing online bus arrival in-
formation to adapt their decisions. The steady-state flow distribution represents the average flow of
passengers on each link in the network. Rambha et al. (2016) represent passenger decision making as a
Markov decision process, where travelers are assumed to formulate a policy based on the least expected
cost while guaranteeing that the destination is reached within a threshold. In both cases - in contrast to
our study - an independence assumption is made regarding transit travel times. In addition, these stud-
ies ignore the potential influence of crowding or congestion on the perceived travel time, or generalized
cost. Tirachini et al. (2016), among others, showed that passengers not only prefer uncrowded routes,
but also dislike to stand. In fact, it can be hypothesized that crowding is becoming an increasingly
important attribute when evaluating alternatives since passengers have nowadays access to real-time
crowding information (Jenelius, 2020).

In this paper, we propose a novel schedule-based public transport assignment model explicitly ac-
counting for emerging information, i.e., supply is inherently variable (e.g., delays and disruptions), and
riders react to and anticipate changing levels of information regarding supply, but also about crowding
and discomfort due to adaptive choices of others. Consequently, the assignment is modeled as random;
passenger decisions are not fixed or modeled to be in steady-state but depend on the scenario.
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2 Problem Formulation

We consider a stochastic schedule-based static transit assignment with fixed demand. In our stochas-
tic setting, we consider probability space (Ω,F ,P), with supply depending on the elements ω (’scenar-
ios’) of Ω. Hereinafter, we assume Ω to be a finite set (F = 2Ω) with mass P : Ω → [0, 1], so that∑

ω∈Ω P(ω) = 1, and P(ω) > 0. We do not assume travel times to be independent: the only assumption
we make is that the possible realizations of the timetable can be captured by a discrete probability
measure with a finite number of scenarios, (numerical approaches in stochastic programming almost
exclusively rely on discrete probability measures (Henrion and Römisch, 2022)).

To model the PT network, we use a random time-space graph G(·) = (V (·), E(·)) : ω 7→ G(ω) =
(V (ω), E(ω)), where - for each scenario ω - each node v is positioned in time and space, that is v =
(t, s) ∈ [0, T ]× S with [0, T ] the operating time interval and S the set of stations in the network.

Supply is modeled through a timetable with a set of services R, and each service r serves a set of
nr stations Sr = {s0r , s1r , . . . , snr

r } ⊂ S. The timetable denotes the arrival and departure time at each
station, but for simplicity we assume there are no dwell times. In our stochastic setting, arrival times at
stations are uncertain and node positions in the time-space graph become ω-dependent. Assuming none
of the services are canceled and no stops are skipped, for a given scenario (realized timetable) ω and
service r, arrival times are denoted by tir(ω). As such, each service r induces a random subgraph Gr(·) =
(Vr(·), Er) : ω 7→ Gr(ω) = (Vr(ω), Er), with node set Vr(ω) = {(t0r(ω), s0r), (t1r(ω), s1r), . . . , (tnr

r (ω), snr
r )},

with tir(ω) ≤ ti+1
r (ω). The edges e ∈ Er connect ’consecutive’ nodes (tir(ω), s

i
r) and (ti+1

r (ω), si+1
r ),

representing PT vehicle movements between two stops with ω-dependent travel time te(ω) = (ti+1
r (ω)−

tir(ω)) ∈ R+.
We have a set of multi-period origin destination pairs (OD pairs) W with (tw, s

o
w, s

d
w) ∈ [0, T ]×S×S

and demands dw > 0, w ∈ W. Each OD-pair is characterized by a departure time-station combination
(tw, s

0
w) ∈ V and an egress station sdw. Apart from travel arcs, edge sets include access, egress and

transfer arcs (Luan et al., 2024). Access arcs represent passengers entering the system from an origin,
egress arcs model passengers arriving at their destination. Transfer arcs model passengers changing
services, where we for now ignore the possible minimum transfer time at station. The scenario-based
approach allows for modeling cases in which due to the uncertainty in arrival and departure times, some
transfers and boardings become impossible. Access arcs e = ((tw, s

0
w), (t

i
r(ω), s

i
r)) are only included in

E(ω) if tir(ω) ≥ s0w. Similarly, transfer edge e = ((tir(ω), s
i
r), (t

j
q(ω), s

j
q)) is only included if tir(ω) ≤ tjq(ω).

2.1 Illustrative Example

We use an example to illustrate our approach to capture scenario-dependent timetables using a
random space-time graph, and how passengers make adaptive routing decisions based on dynamic infor-
mation. Figure 1(a) provides the time-space graph of a scheduled timetable. Travelers are assumed to
arrive at time t0 at station s0, and all want to travel to station s3. In order to do so, they can travel
along path p1, i.e., directly board service r1, travel to station s1, and transfer to service r2. Alternatively,
they can use service r1 to station s2 and transfer there to service r4 (path p2). The last possibility is to
wait at station r1 and use service r3 directly to s3 (path p3).
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(a) Scheduled timetable
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(b) Realized timetable under scenario ω4

Figure 1: Scenario-dependent timetables

In our stochastic setting, arrival times are uncertain, and transfers may become impossible. In such
a setting, passengers adopt a policy, that is an adjustable strategy based on revealed information, rather
than a fixed path (Hall, 1986). Passengers do not know the realized scenario a priori but know the
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tr1,s1 tr1,s2 tr2,s1 tr2,s3 tr3,s0 tr3,s3 tr4,s2 tr4,s3 P(ω)
ω1 2 7 7 17 7 22 20 25 6

20
ω2 2 7 8 18 7 22 20 25 3

20
ω3 2 7 14 24 7 22 20 25 1

20
ω4 8 13 7 17 7 22 20 25 6

20
ω5 8 13 8 18 7 22 20 25 3

20
ω6 8 13 14 24 7 22 20 25 1

20

Table 1: Scenario-dependent service arrival times at each station

probability mass function, and receive hints about the realized scenario over time. Although information
is revealed on a continuous basis, travel decisions are only made upon arrival at a node.

Consider a setting with 6 scenarios regarding the arrival times, i.e., Ω = {ω1, ω2, . . . , ω6}. The
probability mass function of the arrival times at each station is provided in the table above. As a result
the ‘expected’ timetable corresponds to the one depicted in Figure 1(a), but the timetable as presented
there is never realized. Particularly scenario ω4 is relevant since in this scenario the transfer from r1 to
r2 at s1 is not possible; service r1 arrives after r2 has departed (Figure 1(b)).

To formalize the scenario-dependent shortest path, we further introduce notations (Patriksson, 2015).

A feasible flow for a given demand d ∈ R|W|
+ and scenario ω is a pair of vectors (x(ω), v(ω)) ∈ R|E(ω)| ×

R|E(ω)||W| = (xe, e ∈ E(ω); ve,w, (e, w) ∈ E(ω)×W) so that

∆(ω)v(ω) = g, Λ(ω)v(ω) = x(ω), and v(ω) ≥ 0.

We denote by F (ω) the set of all flows (x(ω), v(ω)) that satisfy above system. Here, Λ(ω) is the matrix
so that xe(ω) =

∑
w∈W ve,w(ω). ∆(ω) ∈ {−1, 0, 1}|V (ω)|×|E(ω)| is the node-link incidence matrix with

∆i,e(ω) = 1 if node i is the origin node of link e, ∆i,e(ω) = −1 if node i is the destination node of link e,
and ∆i,e(ω) = 0 otherwise. Further, gi,w = dw if node i is the origin of OD pair w, gi,w = −dw if node i
is the destination of OD pair w, and gi,w = 0 otherwise.

In the unrealistic case that the scenario ω is known beforehand, the optimization problem corre-
sponding to finding the shortest path becomes ω-dependent, i.e.,

LP (ω) : min
(x(ω),v(ω))

z(ω, x(ω)) =
∑

e∈E(ω)

te(ω)xe(ω) s.t. (x(ω), v(ω)) ∈ F (ω).

In light of the scenarios, the shortest path becomes random, and the final link flows is a random pair
of vectors (x∗(·), v∗(·)) : ω 7→ (x∗(ω), v∗(ω)), with (x∗(ω), v∗(ω)) a solution to LP (ω) for each ω ∈ Ω
1. A scenario-dependent shortest path cannot be chosen in practice, since knowledge about the realized
scenario is not available when making boarding and routing decisions. The expected shortest path with
recourse can be re-formulated as multi-stage stochastic program (Shapiro et al., 2021)

min
(x(·),v(·))

Eω

 ∑
e∈E(ω)

te(ω)xe(ω)

 s.t.
(x(·), v(·)) ∈ F (·)
v(·) is “nonanticipative”

where F (·) = {(x(·), v(·)) | (x(ω), v(ω)) ∈ F (ω) for each ω ∈ Ω}. We note that this is an optimization
problem in a Hilbert space (i.e., a space of ‘response’ functions), and not in a conventional real space.
The nonanticipativity constraint basically says that decisions cannot rely on information that has not
yet been revealed. In our example, assuming one unit of flow is sent at t0 from s0 to s3 this comes down
to a constant random flow for links e10 and e13, i.e., xe10(ω) = 1 or 0 for all ω, and xe13(ω) = 1−xe10(ω).
Note that x∗e40(ω

4) = 1 and x∗e40(ω) = 0 otherwise.

2.2 A stochastic variational inequality

We use the linear program of previous subsection to formulate a variational inequality condition
that accounts for uncertainty in the supply, as well as for as increased discomfort as a function of
passenger loads (e.g., in-vehicle crowding). Each arc e has an accompanying flow-dependent generalized

1Note that we slightly abuse notation here, since the edge set is scenario dependent. We can circumvent this issue by
expanding the space for each scenario, and subsequently add constraints to F (ω) that force some link flows to be 0.
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cost te(·, xe(·)) : ω 7→ te(ω, xe(ω)) expressed as a (separable) strictly increasing continuous function of
xe(ω) modeling the increasing discomfort of travelers using arcs e. The cost of a path p is the sum of
travel costs of all edges in that path. Following our discussion, in equilibrium, passengers adopt a policy
in which - upon arrival at a node - they potentially adapt their decision to proceed along the expected
shortest path (in terms of generalized costs) conditional on the information available. Consequently,
such an equilibrium is a solution of the stochastic variational inequality (Rockafellar and Wets, 2017).[

t(·, x(·))
0

]
∈ NF (·)∩N (x(·), v(·)),

where N denotes the non-anticipativity space. N is the normal cone, and since F (·)∩N is convex, the set
of normals can be calculated through convex analysis, using the inner product between functions x(·) and
y(·), understood as ⟨x(·), y(·)⟩ =

∑
ω∈Ω P(ω)⟨x(ω), y(ω)⟩. This information availability combined with

the nonanticipativity constraint can equivalently be formulated using a filtration. As such, passengers
receive hints about the scenario that is being realized over time, and can thereby adapt their decisions.
In the example of Section 2.1, when passengers arrive at time t = 2 at node s1, they know either scenario
ω1, ω2 or ω3 will be realized in the end (with the accompanying conditional probabilities) .

3 Conclusion and outlook

This paper proposes a novel stochastic transit assignment model, assuming that supply is scenario
dependent. Consequently, passengers use online information to adapt their decisions, modeled as a
multi-stage stochastic program. In our approach, recourse decisions occur due to updated information
regarding arrival times of PT vehicles, and the possibility of missed transfers, as well as due to prob-
abilistic information about the adaptive choices of other passengers. The resulting flows are scenario-
dependent, meaning that using the underlying probability mass function, the expected flow per link can
be determined. The stochastic variational inequality can be used to numerically find equilibrium flows.
We compare the resulting flows from our model with the results from other approaches.
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1. Introduction  
Allsop (1974) and Beckmann (1956) suggested that signal-settings should take account of drivers’ 

route choices; so as to beneficially affect the distribution of traffic flows on an urban road network.  

 

Smith and van Vuren (1993) compare IOA (iterative assignment and control) using P0 control and the 

equisaturation policy. The joint dynamics of day-to-day route choice and adaptive signal control 

under real-time information has been considered by Hu and Mahmassani (1997). Cantarella (2010) 

presented a formal definition of the combined day-to-day signal control and traffic assignment 

problem based on a discrete time, deterministic process model. He proved fixed-point stability results. 

Cantarella et al. (2012) showed how equilibrium stability conditions can be embedded as a constraint 

in a day-to-day signal setting–route choice framework. Meneguzzer (1995, 1997, 2012) gives an 

interesting review and shows that the frequency of signal updating may significantly affect the 

duration of the day-to-day dynamic process needed to achieve a network flow–control equilibrium. 

Yang and Yagar (1997) study assignment and control on saturated networks. Bie and Lo (2010) study 

the stability and attraction domains of traffic equilibria in a day-to-day dynamical system. Xiao and 

Lo (2015) investigated the behavior of a joint route choice–signal control dynamical system. 

 

More recently, He et al (2022) present a discrete day-to-day signal retiming problem for fine-tuning 

the green splits in a single-destination traffic network to mitigate the congestion induced by travelers’ 

day-to-day adaptation to a new signal plan. Numerical examples demonstrate that the proposed signal 

retiming scheme can reduce the total system travel time over the traffic equilibration period.  

 

Meneguzzer (2024) considers adaptive traffic signal control to promote the efficient use of road 

intersections, but comments that “the reaction of drivers to repeatedly updated signal settings and the 

ensuing route choice dynamics may trigger the emergence of various kinds of network instability”. 

Meneguzzer suggests a Logit form signal control policy to protect the system from instabilities. 

This paper will prove some stability results concerning certain (P0) responsive traffic signal control 

policies and certain dynamic day-to-day models of route choice; substantially developing some of the 

ideas already published in Liu et al. (2015). The responsive control policies developed in this paper 

are carefully designed to operate a responsive local gating strategy (holding some traffic back) aiming 

to reduce queues in selected locations and overall. The holding back responsive control policies 

considered are all, under certain conditions, still capacity-maximising. Smith (1979) shows that 

network capacity depends on the traffic control policy employed; and so this is important. In this 

abstract we give just one initial stability result in outline only: the paper will contain several 

extensions. In the full paper delays become more part of “control” instead of being minimised.  

Varaiya (2013) presents a different view of responsive traffic control, assuming that route choices are 

fixed; Varaiya suggests a control called MaxPressure.   

 

2. Notation. 
We consider, in a day-to-day context, the dynamics of responsive signal control and routeing on a 

general network. For any signal stage S at a junction there corresponds an anti-stage A at the same 

junction. Anti-stage A is the set of links at the same junction shown red when stage S is shown green.  

https://www.bing.com/ck/a?!&&p=7852a2ce174ad80f2033e038a55132b1b8370e0783e1c7e47d9aa1f42090be99JmltdHM9MTczMjkyNDgwMA&ptn=3&ver=2&hsh=4&fclid=0e924668-8eb4-62ad-2c5f-55608fb46306&u=a1L21hcHM_Jm1lcGk9MTI3fn5Vbmtub3dufkFkZHJlc3NfTGluayZ0eT0xOCZxPUluc3RpdHV0ZSUyMEZvciUyMFRyYW5zcG9ydCUyMFN0dWRpZXMlMjAlMjhpdHMlMjkmc3M9eXBpZC5ZTjEwMjl4OTU1MzYxNTQ4MDY2ODI0ODcxNiZwcG9pcz01My44MDY5MDM4MzkxMTEzM18tMS41NDk3Njc5NzEwMzg4MTg0X0luc3RpdHV0ZSUyMEZvciUyMFRyYW5zcG9ydCUyMFN0dWRpZXMlMjAlMjhpdHMlMjlfWU4xMDI5eDk1NTM2MTU0ODA2NjgyNDg3MTZ-JmNwPTUzLjgwNjkwNH4tMS41NDk3Njgmdj0yJnNWPTEmRk9STT1NUFNSUEw&ntb=1
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Suppose now that in a general network with N routes, M signal stages (and so M antistages) and n links:  

 X = (X1, X2, . . . , XN) is the N-vector of all route flows X1, X2, . . . , XN , 

 si = saturation low at the link i exit, 

 xi = the sum of the route flows which traverse link i (for i = 1, 2, 3, . . . , n),   

 x = (x1, x2, . . . , xn) is the n-vector of link flows x1, x2, . . . , xn ,  

    R = (R1, R2, . . . , Ra, . . , RN) is the M-vector of all anti-stage red-times R1, R2, . . . , RN , 

 ri = the sum of the anti-stage red-times which contain link i (for for i = 1, 2, 3, . . . , n),   

 r = (r1, r2, . . . , rn) is the n-vector of red-times r1, r2, . . . , rn ; ri = 0 if link i is not signalised. 

 ci(∙) is a new non-decreasing cost function of only xi (for i = 1, 2, 3, . . . n),   

 bi represents link i delay,  

    b = (b1, b2, . . . , bn) is the n-vector of extra (beyond ci(∙)) added bottleneck delays bi at the exit of link i, 

link i travel time = ci(xi) + bi, 

 fi  = a particular arbitrary non-decreasing non-negative smooth function defined on the interval [0, si). 

MAJOR INITIAL ASSUMPTION: Given the arbitrary non-decreasing non-negative smooth functions 

fi, for all i the link i extra bottleneck delay bi = fi (xi + siri). 

 

It then follows that for all links i the link i travel time = ci(xi) + bi = ci(xi) + fi (xi + siri) = ci(xi, ri). 

 

Now we define the N route travel costs Cu (which will be travel times here): 

 Cu(X, r) = ∑ link i belongs to route u [ci(xi) + fi (xi + siri)].   

Also we put C(X, r) = [C1(X, r), C2(X, r), . . . , CN(X, r)]. These route costs determine future route 

flows which are obtained by swapping route-flows from more to less costly routes following PAP. 

 

We also then define the M anti-stage red-time-costs ACa by: 

 ACa(X, r) =∑ link i belongs to anti-stage a sibi  = ∑link i belongs to anti--stage a sifi (xi + siri).   

Also put AC(X, r) = [AC1(X, r), AC2(X, r), . . . , ACN(X, r)]. These anti-stage costs determine future 

anti-stage red-times which are obtained by swapping red-time from more to less costly anti-stages 

following a method similar to PAP. 

 

3. P0 Responsive traffic control with the arbitrary functions fi 

Given the arbitrary function  f i , our major initial assumption is that bi = f i (xi + siri). In order to design 

a signal control policy we will now be motivated by our initial assumption that bi = f i (xi + siri). This is 

the added cost (= time spent) felt by vehicles exiting link i, and involves red-times. We also define, for 

each link i, the red-time cost to be sibi = si f i (xi + siri). This cost is to be felt by the signal controller. 

In our general network: at each junction the policy P0 swaps red-time from the more red-time costly 

to the less red-time costly antistages as follows. 

Definition 1. The signal timing proportional P0 adjustment process is as follows. 

Given a small k > 0, for all ordered pairs of anti-stages, (anti-stage a, anti-stage e), at the same junction:  

the proportional P0 adjustment process (PP0AP) 

swaps red time k[Ra(ACa – ACe)]+ from antistage Aa to antistage Ae.    (1)   

   

P0 is built into the red-time adjustment process (PP0AP) or (1) using the sibi in the definition of red-

time-costs ACa in section 2. If link i has no signal then ri = 0 and does not change. Swapping rule (1) is 

similar to the route flow adjustment PAP in Smith (1984) but uses red-times which react to red-cost 

differences instead of route-flows which react to route-cost differences.  

 

Definition 2. The PAP proportional routeing adjustment process is as follows. 

Given a small k > 0, for all ordered pairs of routes, (route i, route j), joining the same OD pair: 

    the proportional routeing adjustment process (PAP) 

swaps route flow kXi[Ci(X) – Cj(X)]+ from route i  to route j.       (2) 
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4. For small k and arbitrary non-decreasing smooth fi, PAP with PP0AP is 

stable  
4.1. For arbitrary non-decreasing smooth fi, [C(X, R), AC(X, R)] is a gradient. 
Every link in our network has link flow xi, red-time ri and a smooth non-decreasing f i (xi + siri). Define 

𝑉𝑖(𝑥𝑖, 𝑟𝑖) = ∫ 𝑐𝑖(𝑢)𝑑𝑢
𝑥𝑖

0

+ ∫ 𝑓𝑖(𝑢)𝑑𝑢
𝑥𝑖+𝑠𝑖𝑟𝑖

0

. 

Then  

𝜕𝑉𝑖(𝑥𝑖, 𝑟𝑖)/𝜕𝑥𝑖 = 𝑐𝑖(𝑥𝑖) + 𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖) 

𝜕𝑉𝑖(𝑥𝑖, 𝑟𝑖)/𝜕𝑟𝑖 = 𝑠𝑖𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖).   
So  

𝑔𝑟𝑎𝑑 𝑉𝑖(𝑥𝑖, 𝑟𝑖) = (𝑐𝑖(𝑥𝑖) +  𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖), 𝑠𝑖𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖)). 

Thus 

(𝑐𝑖(𝑥𝑖) +  𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖), 𝑠𝑖𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖)) is the gradient of 𝑉𝑖. 

Adding over i, it now follows that  

(𝐜(𝐱) + 𝐟(𝐱 + 𝐬𝐫), 𝐬𝐟(𝐱 + 𝐬𝐫)) is the gradient of 𝑉(𝐱, 𝐫) = ∑  𝑉𝑖(𝑥𝑖 , 𝑟𝑖)

𝑛

𝑖=1

. 

Using standard arguments, it now follows that [C(X, R), AC(X, R)] is a gradient. 

4.2. For arbitrary non-decreasing smooth fi, (control and routeing) adjustment (1) with 

(2) is stable 

In a general network; it is easy to check (using the results in 4.1 above) that: if we start at a feasible 

(𝐗, 𝐑), then PAP route-flow X swapping (toward cheaper routes) (2) and P0 red-time R swapping 

(toward cheaper antistages (1) both reduce V if k is small enough. Thus simultaneously following (1) 

and (2) reduces V. 

 

The paper shows, in a general network: 

A: that if f is bounded then under reasonable conditions these dynamics cause (𝐗, 𝐑) to converge to the 

set of those (𝐗, 𝐑) which minimize V, and  

B: that if f is unbounded, representing capacity limits on links; then, under reasonable conditions, 

dynamics (2) and (1): (a) keep delays bounded and (b) cause (𝐗, 𝐑) to converge to the set of those (𝐗, 𝐑) 

which minimize V. This does not happen with standard control policies; see Smith (1979) for example. 

4.3. Extension to a different control policy but still using the above functions fi   

The above stability results also hold if the link i red-time cost = si f i (xi + siri) + hi(ri), where hi(∙) is a 

new non-decreasing bounded function of only ri. In this case we have the Ph adjustment process PPhAP, 

instead of PP0AP.  Again here the bi are still given by the arbitrary continuous non-decreasing delay 

formulae fi (xi + siri).  

 

5. Extensions to allow for more ideal and more real link delay functions   
The link functions fi(xi + siri) have been arbitrarily chosen. (The only requirements are that they are 

continuous and non-decreasing.) It follows that:  

(A) typically real delays bi will be very different to the above arbitrarily chosen f i (xi + siri) and   

(B) we have proved our stability results above for a very wide variety of arbitrary (smooth, non-

decreasing) functions f i (xi + siri). There are two directions which arise from A and B. These are: 

1: to more carefully select the f i (xi + siri) so as to more closely approximate real delay functions, and  

2: to more carefully select the f i (xi + siri) from the very wide range of functions available to help control 

traffic flows and queues most beneficially. 

These two are conflicting directions; in the paper we show how to exploit both. We use more real (MR) 

delay functions and also use also the more ideal (MI) (or more beneficial) delay functions. So now:  

A. We choose the functions f MR
i (xi + siri) to best or better represent reality; these are now fixed; 
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B. We choose, by some unspecified method, more ideal function f MI
i (xi + siri), which would if 

imposed benefit the network most. 

5.1.  More real delay functions f MR
i (xi + siri) and more ideal functions f MI

i (xi + siri). 

For link i such possible different delay functions, solid curve (more ideal) and dotted curve 

(more real) are illustrated in figure 1. Now we seek to control the real network (with the dotted 

more real delay curve) using the solid more ideal curve as a “target” delay curve. Like this we 

aim not only retain the stability shown in section 4 but also aim to cause routeing / control 

adjustments which reduces queueing and other measures of network performance. 

 

 

 

 

 

 

 

 

 

  

Figure 1. More ideal (solid) and more real (dotted) link delay functions. Connection between ri and ri’. 

Here our more real link i delay functions f MR
i still depend  on (xi + siri). In this simple “different cost 

function shape only” case the choice of red-time re-allocation is to be a modified form of rule (1) in 

definition 1; the simple modification takes careful account of the more ideal functions f MI
i(xi + siri) 

above, which we have been free to choose, and new different more “real” delay formulae f MR
i(xi + siri).  

 

We here outline in this abstract the particular case where real delays are STILL given by formulae f MR
i 

(xi + siri) depending only on (xi + siri). See figure 1. It is natural to assume that each new more real 

delay function f MR
i (xi + siri) is smaller than the more ideal delay f MI

i (xi + siri) which we have already 

chosen.  f MR
i (xi + siri) may be far smaller than our previously chosen more ideal f MI

i (xi + siri). See 

figure 1. Figure 1 shows both a reasonable f MR
i (xi + siri) and a reasonable f MI

i (xi + siri). Now we 

determine ri’
 by following the three arrows (up, right, down) toward the bottom of figure 2. Generally, 

ri’> ri. Following the arrows in this way guarantees that ri’ satisfies: f MI
i (xi + siri) = f MR

i (xi + siri’). 

Thus we may control the network with the more real cost functions f MR
i (xi + siri’), by choosing ri’ so 

that ri follows (1) above. Then provided xi follows (2) we retain stability shown in section 4. 

 

In more detail, if we wish (in figure 1) to (say) increase ri to ri + αi then we would increase to ri’ + αi’ 

in the real network as shown in figure 1 where  

f MI
i (xi + siri) = f MR

i (xi + siri’) 
  

 

More ideal link delay 

function f MI
i (xi + siri)  

   and 

more real link delay 

function 
f MR

i (xi + siri’) 

 

 0 xi+siri’
 xi+siri

 xi
 si

 

link delay function 
f MI

i (xi + siri) 

 

link delay function 
f MR

i (xi + siri)
 

 

xi + siri’ + siαi’ 

 

xi + siri + siαi 
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 (xi + siri) determines (xi + siri’) and (xi + siri
 + siαi) determines (xi + siri’ + siαi’). 

So we may control the ri in accordance with (1) and still have stability even though the more real cost 

functions fi = f MR
i (dotted) are not at all the same as the more ideal delay functions f MI

i. See figure 1. 

The full paper does this with more general delay formulations. 

 

6.  A simple comparison  

In figure 2, initially links 1, 2, 3 and 4 have the more real delay function f MR
i (xi + siri). We consider on 

the figure 2 network the effects of swapping link 1 delay function from a reasonable f MR
i (xi + siri) to a 

reasonable f MI
i (xi + siri). It will be shown in the full paper, over a range of demands, that this switch 

substantially reduces vehicle flows and vehicle occupancies on link 1 and 4, increasing flows on links 

2 and 3. This is achieved while  

 (A) still maximising network capacity and  

 (B) still retaining the stability shown in section 4. 

The benefits estimated on links 1 and 4 arise because we use f MI
1 (x1 + s1r1) instead of f MR

1 (x1 + s1r1). 

Of course swapping the delay formula is achieved by following the process outlined in section 5. 

 
Figure 2. A signal-controlled network with an origin at n1 and a destination at n3. 
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1 Introduction

1.1 Motivation

Traffic routing control aims at reducing congestion via providing drivers with route guidance. Nevertheless,
it has been reported that driver non-compliance with routing instructions could undermine the performance
of this management strategy [1], especially social routing advice that deliberately detours part of vehicles to
achieve benefits in terms of road networks [2]. Besides, our previous paper showed in a theoretical manner
that driver non-compliance could destabilize routed traffic systems [3].

Fortunately, it is promising to secure traffic routing control via pricing strategies. This is because mone-
tary costs also play an important role in route choices [4]. Indeed, applying joint routing and pricing polices
is not a new idea [5]. However, to the best of our knowledge, few studies have conducted an analytical
analysis of these management approaches, particularly considering stochastic driver compliance influenced
by congestion and tolls.

In this paper, we investigate the design of pricing policies that enhance driver adherence to route guidance,
ensuring effective routing control. The major novelty lies in that we adopt a Markov chain to model drivers’
compliance rates conditioned on both traffic states and tolls. By formulating the managed traffic network as
a nonlinear stochastic dynamical system, we can quantify in a more realistic way the impacts of driver route
choices and thus determine appropriate tolls. Specially, we focus on a network comprised of two parallel
links; see Figure 1. Though simple, the two-parallel-link network serves as a typical scenario for studying
routing control; it turns out to be an appropriate abstraction of multiple parallel links: one stands for an
arterial and the other denotes a set of local streets [6]. We assume that a reasonable routing policy is specified
in advance, which means both the corridor e1 and the local street e2 are fully utilized if drivers completely
obey the routing control. However, drivers could be reluctant to be detoured to link e2. Thus a fixed toll p
is set on the corridor e1 to give drivers incentives to choose the local street.

Corridor

Local streets

Origin Destination

(a) A network consisting of one corridor and
multiple local streets.

buffer e0

Corridor e1 with a fixed toll p

Local street e2

(b) An abstract of networks consisting of
parallel links.

Figure 1: Modeling parallel-link networks.
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1.2 Our contributions

We try to address two main questions:

(i) How to determine whether the network can be stabilized by routing and pricing strategies, subject to
driver non-compliance?

(ii) How to find the optimal pricing strategy that maximizes the network throughput, given a routing
policy?

The first question aims to assess the effectiveness of the given routing and pricing policies, where insta-
bility signals inadequate traffic management. To address this, we derive a stability condition (Theorem 1)
using the Foster-Lyapunov criterion [7] and an instability condition (Theorem 2) based on the transience of
Markov chains [7].

It should be pointed out that the exact throughput cannot be determined, even for a simple two-parallel-
link network, due to the randomness of driver non-compliance. To address the second question, we suggest
using the stability and instability conditions to establish lower and upper bounds on throughput. This allows
us to select suitable tolls that maximize these bounds.

2 Problem Statement

In this section, we first present our model formulation. Then we introduce the formal definitions of stability
and throughput, which are closely related to our research problems.

2.1 Model formulation

The considered network comprises links e0, e1 and e2, as shown in Figure 1(b). Each link e ∈ {e0, e1, e2}
is characterized by a length le and a state of traffic density xe(t) at time t. Particularly, link e0 serves
a buffer receiving the upstream demand D(t) ∈ D. We assume that D(t) is governed by a stationary
stochastic process with E[D(t)] = D̄. Following the convention [8], the buffer is assumed to have infinite
storage, indicating xe0(t) ∈ [0,∞). Link e0 is also associated with a bounded and non-decreasing sending
flow fe0 : [0,∞) → [0, Qe0 ], where Qe0 denotes the capacity. We define its critical density as

xc
e0 := inf{x|fe0(x) = Qe0}, (1)

which represents the lowest traffic density at which the sending flow fe0 attains its capacity. As for link
e ∈ {e1, e2}, it only has finite storage such that xe ∈ [0, xmax

e ] where xmax
e is interpreted as the jam density.

In addition to the bounded and non-decreasing sending flow fe : [0, xmax
e ] → [0, Qe], link e ∈ {e1, e2} also

has a bounded and non-increasing receiving flow re : [0, xmax
e ] → [0, Qe]. For notational convenience, we let

X := [0,∞)× [0, xmax
e1 ]× [0, xmax

e2 ] and x := [xe0 , xe1 , xe2 ]
T ∈ X .

For traffic management strategies, we first consider a routing policy, denoted by α : X → [0, 1], specifying
the proportion of vehicles assigned onto link e1. The routing policy α(x) is assumed to be non-increasing
with respect to xe1 and non-decreasing with respect to xe2 . Besides, a fixed toll p ≥ 0 is set on link e1 for
each passing vehicle. Then, we model drivers’ response to the traffic management. Particularly, we denote by
Ce(x, p) the compliance rate regarding the routing instruction to link e ∈ {e1, e2}, which generally depends
on the traffic state x and the fee p. We consider that C(x, p) := [Ce1(x, p), Ce2(x, p)]

T is a random vector
conditioned on x and p, with a distribution Γx,p supported on C ⊆ [0, 1]2. We also assume i) that E[Ce1(x, p)]
is non-increasing with respect to xe1 and p, and non-decreasing with respect to xe2 , and ii) that E[Ce2(x, p)]
is non-decreasing with respect to xe1 and p, and non-increasing with respect to xe2 .

The conservation law yields the following dynamics:

xe0(t+ 1) =xe0(t) +
δt
le0

(
D(t)− qe1(x, p, C)− qe2(x, p, C)

)
, (2a)

xe(t+ 1) =xe(t) +
δt
le

(
qe(x, p, C)− fe(xe)

)
, e ∈ {e1, e2}, (2b)
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where δt is the time step size, and the flow from link e0 to link e ∈ {e1, e2}, denoted by qe(x, p, C), is given
below.

qe1(x, p, C) =min
{(

α(x)Ce1(x, p) + (1− α(x))(1− Ce2(x, p))
)
fe0(xe0), re1(xe1)

}
, (3a)

qe2(x, p, C) =min
{(

α(x)(1− Ce1(x, p)) + (1− α(x))Ce2(x, p)
)
fe0(xe0), re2(xe2)

}
. (3b)

Clearly, we obtain a nonlinear stochastic system (2a)-(2b) that is a Markov chain.
Now we briefly discuss how the toll p influences the inter-link flows qe1(x, p, C) and qe2(x, p, C). As

mentioned in previous section, this paper considers that drivers may resist being redirected to local streets.
When the toll p is low, the compliance rate Ce1(x, p) is high but Ce2(x, p) could be low, consequently
compromising the routing policy α. However, extremely high tolls may render low Ce1(x, p) and high
Ce2(x, p), which also nullifies traffic routing.

2.2 Stability and throughput

The following gives the definition of stability considered in this paper.

Definition 1 (Stability & Instability). A stochastic process {Y (t) : t ≥ 0} with a state space Y is stable if
there exists a scalar Z < ∞ such that for any initial condition y ∈ Y

lim sup
t→∞

1

t

t∑
τ=0

E[|Y (τ)||Y (0) = y] ≤ Z, (4)

where |Y (τ)| denotes 1-norm of Y (τ). The network is unstable if there does not exist Z < ∞ such that (4)
holds for any initial condition y ∈ Y.

The stability above is widely used in studying traffic control [9]. It indicates that the time-average
traffic density is bounded in the long term. Obviously, in practice one is more concerned about traffic
performance within finite time (e.g. peak hours). Although Definition 1 simplifies the analysis of real-world
traffic systems, our later numerical examples illustrate that methods based on this definition are sufficient
to produce insightful results for evaluating and designing management strategies. Moreover, this establishes
a foundation for future research on refined finite-time stability [10].

The throughput D̄α,p of the network, given the routing policy α and the toll p, is defined as the maximal
expected demand that the network can accept while maintaining stability:

D̄α,p := sup D̄ subject to the system (2a)-(2b) is stable.

Our research problems are i) how to verify whether the system (2a)-(2b) under the routing and pricing
policies satisfies the condition (4), and ii) how to select appropriate p to maximize the throughput.

3 Major Results

In this section, we present both theoretical and numerical results. We begin by introducing theorems that
establish stability and instability conditions, followed by their application in stability verification. Next, we
provide examples illustrating the alignment of our theorems with numerical simulations. We also discuss the
insights gained from our proposed methods.

3.1 Stability & instability conditions

We present two theorems below. Theorem 1 states one stability condition, derived using the Foster-Lyapunov
criterion [7], while Theorem 2 provides one instability condition, based on the transience property of Markov
chains [7].
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Theorem 1. The system (2a)-(2b) is stable if there exists a vector θ := [θe1 , θe2 ]
T ∈ [0, 1]2 and a negative

scalar γ < 0 such that

D̄ −
∑

e∈{e1,e2}

(1− θe)E[qe(x, p, C)]−
∑

e∈{e1,e2}

θefe(x) < γ, ∀x ∈ {x ∈ X |xe0 = xc
e0}, (5)

where xc
e0 is given by (1) and E[qe(x, p, C)] :=

∫
C qe(x, p, c))Γx,p(dc).

Theorem 2. The system (2a)-(2b) is unstable if there exists a vector θ := [θe1 , θe2 ]
T ∈ [0, 1]2 and a non-

negative scalar γ ≥ 0 such that

D̄ −
∑

e∈{e1,e2}

(1− θe)E[qe(x, p, C)]−
∑

e∈{e1,e2}

θefe(x) ≥ γ, ∀x ∈ {x ∈ X |xe0 = xc
e0}. (6)

Theorem 1 (resp. Theorem 2) essentially says that the network is stable (resp. unstable) if the weighted
expected net flow is negative (resp. non-negative) over the traffic state space {x ∈ X |xe0 = xc

e0}. One can
implement Theorem 1 by solving the following Semi-Infinite Programming (SIP [11]):

(P1) min
θ,γ

γ subject to (5).

If the optimal γ∗ is negative, the stability is concluded. Similarly, the instability verification requires solving
the SIP:

(P2) max
θ,γ

γ subject to (6).

If the optimal γ∗ is non-negative, we say that the system (2a)-(2b) is unstable.

3.2 Numerical examples

The following presents settings in our numerical examples. First, the demandD(t) is assumed to be uniformly
distributed on [Dmin, Dmax]. Then, the sending and receiving flows are specified by fe(x) = min{vexe, Qe}
for e ∈ {e0, e1, e2} and re(x) = min{Re−wexe, Qe} for e ∈ {e1, e2}, respectively. We consider a fixed routing
ratio based on the link capacities Qe1 and Qe2 , namely α := Qe1/(Qe1 +Qe2). The compliance rate Ce(x, p)
is uniformly distributed on [max{C̄e(x, p)− ϵe, 0},min{C̄e(x, p) + ϵe, 1}], where C̄e(x, p) is given by

C̄e(x, p) :=
1

1 + eβ
0
e+β1

exe1
+β2

exe2
+β3

ep
.

The parameters are summarized in Table 1. Note that negative β0
e1 and positive β0

e2 indicate that drivers
naturally prefer the corridor.

Table 1: Parameter settings.

ve0 80 (km/h) ve1 100 (km/h) ve2 50 (km/h) β0
e1 −4 β0

e2 1
Qe0 8000 (veh/h) Qe1 4000 (veh/h) Qe2 2000 (veh/h) β1

e1 0.01 β1
e2 −0.02

Dmin 4000 (veh/h) Re1 4800 (veh/h) Re2 2400 (veh/h) β2
e1 −0.02 β2

e2 0.03
Dmax [5000, 8000] (veh/h) we1 20 (km/h) we2 10 (km/h) β3

e1 0.3 β3
e2 −0.6

ϵe1 0.1 ϵe2 0.1

3.2.1 Impacts of tolls and demands

Figure 2(a) shows the time-average traffic densities after 104 steps and reveals the stability and instability
regions. The white boundary is obtained from Theorem 1, while the red boundary is derived from Theorem 2.
Therefore, we can conclude that the region to the left of the white boundary is stable, whereas the areas
in the upper right and lower right corners are unstable. These findings are consistent with the numerical
results. Note that there is a gap between the white and red boundaries, within which stability or instability
cannot be determined. This is because we do not have sufficient and necessary stability conditions. In fact
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the gap is not a concern, as it can be narrowed by using more advanced Lyapunov or test functions, though
at the expense of increased computational cost.

The key findings from Figure 2 are summarized as follows. First, setting the toll p either too low or too
high can result in network instability. Second, in the case study, a toll of approximately 5 $/veh is identified
as optimal for maximizing the lower bound of throughput.
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Figure 2: Impact analysis of tolls and expected demands.

3.2.2 Impacts of variances of compliance rates

Figure 3 illustrates the impacts of compliance rate variances by keeping the same C̄e2(x, p) but selecting
different ϵe2 . From the upper right corners of Figures 3(a)-(c), we can see the instability regions enlarge
as ϵe2 increases. This demonstrates that uncertainties in compliance rates may bring negative impacts on
traffic management. From the lower right corners of Figures 3(a)-(c), it is interesting to observe that, for
the same level of demand, increasing tolls can stabilize a previously unstable network as ϵe2 increases. This
result is reasonable since more uncertainties indicate higher tolls to persuade drivers to choose link e2.

More importantly, our white and red boundaries in Figures 3(a)-(c) capture those necessary changes. This
demonstrates that our developed theorems offer practical yet powerful tools for evaluating traffic systems
without the need for extensive simulations.
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(a) ϵe2 = 0.
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(b) ϵe2 = 0.2.
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(c) ϵe2 = 0.4.

Figure 3: Stability and instability regions under different ϵe2 .

4 Future Work

This work offers several potential avenues for extension. First, more sophisticated pricing strategies, such
as stepwise tolls, could be explored. Second, it would be valuable to investigate conditions under which the
stability criterion is both necessary and sufficient. Third, the approach could be expanded to accommodate
more complex network structures.
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1 INTRODUCTION
The Traffic Assignment Problem (TAP) determines traffic flow across a network based on OD demand and capacity
constraints (Yosef Sheffi. Prentice-Hall, 1986). It is traditionally solved using mathematical optimization under
the User Equilibrium (UE) principle, assuming drivers have perfect information and act rationally (WARDROP,
1952). While this may not fully reflect reality, it provides reliable solutions (Jafari et al., 2017). However, solving
large networks is computationally expensive, as complexity increases non-linearly with OD pairs and feasible
paths. Any change in demand or network structure requires re-solving, underscoring the need for an alternative
approach to estimating new solutions efficiently.

UE is typically computed using optimization methods like the gradient method or fixed-point algorithms (Liu
et al., 2023; Ameli et al., 2020). With advancements in machine learning, prediction offers a promising alternative
to direct optimization. Supervised learning can be used to learn and predict optimal solutions for new scenarios.
Recent studies have estimated UE link flows using machine learning (Liu & Meidani, 2024; Rahman & Hasan,
2023), but this study takes it further by directly predicting path flow from a user’s perspective. Since extracting
path flow from link flow is a complex equilibration problem with no unique solution, predicting equilibrium path
flow directly provides better insights into demand propagation.

Deep neural networks (DNNs) model complex patterns across domains, including transportation (Wang et al.,
2022). Transformer, a state-of-the-art deep learning model, excels in sequence modeling tasks (Wen et al., 2023).
This study employs a Transformer-based architecture to estimate equilibrium path flow in multi-class traffic net-
works and explores its use in ”what-if” analyses to assess network and demand changes.

The key research question is whether path flow distribution under UE can be accurately predicted at the
network level. Since many methods fail to capture OD correlations, Transformer offers a promising alternative.

2 METHODOLOGY
Following the UE principle, the shortest path is the path that has the minimum cost. In the UE solution, all used
paths must be at the minimum possible cost (or equal the shortest path). Mathematically, it is equivalent to the
following conditions:

f r
p(cr

p − ur) = 0 ∀p ∈ Pr, r ∈ R (1)

cr
p − ur ≥ 0 ∀p ∈ Pr, r ∈ R (2)∑
∀p∈Pr

f r
p = xr ∀r ∈ R (3)

f r
p ≥ 0, cr

p ≥ 0, ur ≥ 0 ∀p ∈ Pr, r ∈ R (4)
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Figure 1: Model architecture

Table 1: Notation and definitions

Notation Description
n Number of classes in the network
Pr ∈ Pk Feasible path set containing k feasible paths for each OD pair r ∈ R
X OD demand matrix
xr ∈ X Demand of OD pair r
f r
p ∈ F Path flow of OD pair r on path p

cr
p Cost of path p for OD pair r

ur Minimum path travel cost of OD pair r
F∗ Optimal path flow solution
F̂∗G,X Predicted path flow distribution for graph G with demand X

The model proposed in this study aims to learn a function F (.) that maps OD demand matrix X and feasible
path set P in graph G, to optimal path flow distribution F∗, defined as:

F (G,X,P) = F̂∗G,X (5)

To effectively learn the graph, all features must be on the same scale. Since the raw data is not normalized,
we preprocess it by encoding raw features into a lower-dimensional representation. The input tensor is composed
of three key tensors: (1) Graph information tensor – Stores link features, including length, capacity and free-flow
travel time; (2) OD demand tensor – Represents the demand matrix for each class; (3) Feasible paths tensor – En-
codes feasible paths for each OD pair. These tensors are stacked and normalized before being fed into the Encoder
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block. The Encoder consists of two main components: a multi-head attention mechanism and a feed-forward neu-
ral network, both followed by residual connections and two layers of normalization. The Decoder generates the
output path flow distribution by attending to both the previous Decoder layer’s output and the Encoder’s output.
In Transformer architectures, the attention mechanism within both the Encoder and Decoder enables the model to
selectively focus on relevant values while filtering out less meaningful ones (Vaswani et al. (2017)).

The model is trained using the Mean Squared Error (MSE) loss function and optimized with the Adam
algorithm

To evaluate the performance of the model, we calculate the difference of average delay (AD) of the network
between the predicted flow and the solution obtained from the optimizer as follows:

AD =

∑
∀r

∑
∀p

f̂ r
p(cr

p − ur)∑
∀r

xr

(6)

3 NUMERICAL EXPERIMENT
We evaluate the proposed model’s generalization ability on a Manhattan-like network by generating a 25-node,
80-link grid network. Link attributes, including capacity, length, and free-flow travel time, are randomly assigned
based on a uniform distribution. The training process demonstrates smooth convergence after 80 epochs with
minimal fluctuations. Training takes 72 minutes, whereas solving the UE problem using an optimizer requires
210 minutes. The model predicts path flows for a single OD demand matrix in just 0.001 seconds, making it
approximately 5000 times faster than the Gurobi optimizer, which takes 5 to 7 seconds per OD matrix. Table 2
presents the model’s prediction performance under varying OD demand missing ratios.

Table 2: Model performance under different OD demand missing ratios

Indicator Missing ratio = 30% Missing ratio = 40%
Link flow Path flow Link flow Path flow

MAE 236.61 10.95 307.01 18.54
MAPE (%) 2.56 4.50 4.35 5.57
Average path cost (mins) 216.62 387.51
Predicted average delay (mins) 2.64 5.34
Delay percentage (%) 1.22 1.38
AD difference (mins) 2.62 4.61

Building on the model’s performance with the Manhattan-like network, we assess its effectiveness on an
urban transportation network (Sioux Falls network). Table 3 presents the model’s prediction performance at 30%
of OD demand missing, across different scenarios, including no missing links, 5% missing links, and 10% missing
links. The results indicate that while the model maintains the ability to predict path flow distribution even with
missing links, its accuracy is highest when all links are available.

Table 3: Model performance with Sioux Falls network under different link missing ratios

Missing ratio = 0% Missing ratio = 5% Missing ratio = 10%Indicator Link flow Path flow Link flow Path flow Link flow Path flow
MAE 256.27 5.02 425.32 6.93 522.35 7.37
MAPE (%) 1.61 2.25 5.54 2.98 6.87 3.07
Predicted average delay (mins) 0.71 1.96 2.15
Delay percentage (%) 0.79 1.52 1.69
AD difference (mins) 0.65 1.9 2.06
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4 CONCLUSION
This paper introduces a Transformer-based framework for predicting User Equilibrium (UE) solutions in the Traffic
Assignment Problem (TAP). Unlike traditional optimization methods, which are computationally expensive, this
approach uses deep learning for efficient and flexible predictions. While prior studies focus on link-level flow
estimation, our model predicts path flows from a user perspective, offering a more detailed theoretical solution.
Using an Encoder-Decoder architecture, it captures OD correlations to enhance traffic flow predictions (Figure 1).
The key contribution is replacing traditional optimization with a predictive model, shifting the focus from solving
UE to leveraging learned patterns for faster and more adaptable solutions. To validate the model, we test it on
synthetic and real-world networks, including scenarios with incomplete OD demand and missing links. Unlike
methods considering all possible equilibrium solutions, our approach prioritizes a single high-quality equilibrium
based on selected criteria.

The proposed framework serves as a robust surrogate model for accelerating optimization in applications like
resource allocation and infrastructure management. It reduces computational costs, adapts to network changes,
and supports ”what-if” analysis for transportation planning. The model generalizes across different test cases and
reliably predicts path flows even with incomplete OD demand data.
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Abstract

Efficient volunteer assignment and routing are critical to the success of non-profit food
banking systems, ensuring timely and equitable food access for food-insecure communities.
This study introduces an optimization-based framework for volunteer assignment and rout-
ing to service centers in non-profit food banking under equity constraints. The goal is to
minimize operational costs while ensuring fair workload distribution among volunteers, con-
sidering key logistical and capacity constraints. The proposed methodology formulates the
problem as a Vehicle Routing Problem with Pickup and Delivery and Equity Constraints
(VRPPD-e), integrating mixed-integer linear programming to optimize volunteer assign-
ments and vehicle routing. The model accounts for volunteer availability, service center
demand, vehicle capacity, and time-window constraints while incorporating fairness mea-
sures to balance workload distribution. To enhance computational efficiency, heuristic-based
refinements and decomposition techniques are employed. Numerical experiments on a test
network demonstrate the effectiveness of the model in balancing equity and efficiency. To
further validate its real-world applicability, the framework is being expanded to a large-scale
non-profit food banking system in Durham, NC, incorporating a greater number of volun-
teers, service centers, and operational constraints. The results will provide valuable insights
for data-driven decision-making in non-profit logistics, improving food banking operations
through optimized volunteer coordination.

Keywords: Volunteer Assignment, Vehicle Routing Problem with Pickup and Delivery, Equity,
Column Generation, Labeling Algorithm, Lagrangian Relaxation

1 Introduction

With the world population growing, ensuring equitable access to food resources has become
critically important since more than 820 million people suffer from hunger currently (Tkemaladze,
2025). Therefore, the food banks that are involved in organizing service locations with volunteers
to serve food for food insecure people, must improve their decision making and streamline their
operations. Past literature presents several studies on vehicle routing problem with pickup and
delivery including time windows (VRPPD-TW). These include the study by Ropke & Pisinger
(2006) where a meta-heuristic based on large neighborhood searching algorithm is used, and
the exact solution technique presented by Ropke et al. (2007). Other efficient techniques are
also used to solve VRPPD-TW such as augmented Lagrangian relaxation (Yang et al., 2020)
or tabu search (Qiu et al., 2018). Furthermore, many studies focus on vehicle routing problem
with pickup and delivery with equity (VRPPD-e) where fair resource allocation is done in the
non-profit settings. These include the studies by Balcik et al. (2014), Rey et al. (2018), Nair
et al. (2018), and Eisenhandler & Tzur (2019). Although the past literature efforts provide
insights into various vehicle routing and resource allocation operations in non-profit settings,
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there exists no work that jointly model fair volunteer assignment and routing considering equity,
time windows and capacity constraints.

This study introduces a pioneering solution technique to VRPPD-e for non-profit food dis-
tribution. It concentrates on optimizing multiple volunteer assignments to service centers which
deliver to food-insecure households via food banks, using cost-efficient routes for their pickups
and drop-offs with equitable service distribution. This approach considers key constraints such as
volunteers’ available time windows and vehicle capacity to achieve a balanced and a fair solution,
handling volunteer transportation to and from service locations efficiently.

2 Problem Statement

The objective of the proposed model is minimizing the cost of routing (handling efficiency) while
maximizing the number of volunteers assigned across the food distribution network (dealing with
effectiveness), and ensuring a fair distribution of volunteers across service centers depending on
the demand (handling equity).

The three parties involved in the food distribution network are food bank, volunteers, and
service locations. A service location is a program organized by the food bank through a part-
nering agency to distribute food to food-insecure people. Volunteers visit service locations to
help food distribution and other tasks required. However, not all those volunteers would have
means of traveling to and from the allocated service locations, and thus, the food bank provides
transportation for those volunteers in need. The food bank uses its capacitated fleet of vehi-
cles to transport volunteers from their homes to a service location, and back to their homes,
depending on the demand at each service location ensuring equity. The food bank manages this
network of volunteers and service locations by assigning volunteers, with efficient vehicle routes
with predefined time windows and capacity constraints. A special requirement of this problem
is the fact that the food bank has to arrange dropping off volunteers to their respective homes
after completing their service, i.e., the pick-up and drop-off locations are the same (co-located),
making the problem unique and more complex than the vehicle routing problem (VRP) models
with classical flow conservation constraints. Figure 1 depicts an example of a feasible solution
for the explained assignment-routing network optimization (for a small scale network with 1 food
bank, 5 volunteers and 2 service locations). It depicts how the co-located pickup and delivery
locations act in the model, where all service locations are served but not all volunteers are served.

Figure 1 – Example of assignment-routing network optimization

3 Methodology

An initial approach to solve the aforementioned problem involves formulating a mixed integer
linear programming (MILP) model. This basic model becomes computationally challenging
when applied to large-scale instances. To address this scalability issue, the model is adapted
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into a customized branch-and-price algorithm. This algorithm acts as the master problem and
incorporates a Lagrangian relaxation technique to handle the equity constraints more efficiently.
The main objective of the model remains threefold: minimizing the overall routing costs while
simultaneously maximizing the number of volunteers and ensuring equity.

The branch-and-price algorithm refines the solution iteratively through a column generation
procedure. At each iteration, a new feasible route is introduced into the master problem by
identifying and adding routes with negative reduced costs. This process continues until no ad-
ditional routes with negative reduced costs can be found. To accelerate the column generation,
a bi-directional labeling algorithm is used for generating feasible routes, which effectively solves
the shortest path pricing sub-problem. This step significantly enhances computational efficiency
due to its ability to prune non-optimal paths early. It applies the strongest dominance rules
in both the forward and backward directions, ensuring that only the most promising paths are
remained. Once an optimal solution for the master problem is reached through the column gen-
eration process, the Lagrangian relaxation framework further refines the optimal solution. The
sub-gradient method is employed to iteratively adjust the Lagrangian multipliers, progressively
improving the bound on the objective function until convergence is achieved, which ultimately
ensures the solution optimality.

4 Results

Numerical experiments on the proposed model are conducted for a small-scale network with one
food bank, eight volunteers, and two service locations (a 10-node network) with five available
vehicles. Preliminary results for initial model instances are presented in 1, where the average
demand per service location is varied. The results illustrate how the model effectively balances
equity in volunteer assignments while minimizing routing costs.

The model runtime remains significantly low due to the small problem size and the performance-
boosting algorithms integrated into the solution approach. To thoroughly assess the scalability
and effectiveness of the methodology, we are expanding the numerical experiments to a real-world
large-scale food distribution network in Durham, NC. This extended analysis will incorporate a
substantially larger number of volunteers, service locations, and operational constraints, provid-
ing a comprehensive evaluation of the model’s computational efficiency and practical applicability
in large-scale food rescue logistics.

Table 1 – Preliminary results for initial instances of the model

Avg demand Runtime Optimal cost Optimal # routes Avg optimal # volunteers/route
1 0.07 sec $8.03 1 2
2 1.53 sec $15.72 2 2
3 0.15 sec $18.47 2 3
4 2.33 sec $29.23 3 2.67
5 2.01 sec $33.99 3 2.67

Figure 2 depicts the variation of optimal cost and average optimal no. of volunteers per route
with the total number of nodes in the network considering the average demand per location as
3 and the available number of vehicles as 5.

5 Conclusion

It is vital for the food banks to adhere to performance improvement techniques for efficient and
effective service distribution, with the rising levels of food insecurity across the world. This
study provides a significant technique for the food distribution networks to optimally carry out
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Figure 2 – Variation of optimal cost and average optimal no. of volunteers per route with the
total number of nodes

the volunteer management and routing processes. The proposed model utilizes a novel approach
to assign multiple volunteers under equity conditions, for a non-profit setting in the context of
food distribution, while minimizing the routing costs. It follows the conversion of the mixed
integer linear programming model to a Lagrangian relaxed model using branch-and-price algo-
rithm. The performance is enhanced using column generation to generate the routes, where
the shortest path pricing subproblem is solved using the labeling algorithm. This model de-
picts high computational efficiency with the aforementioned performance boosting techniques.
By combining branch-and-price with column generation, the solution progressively improves lin-
ear programming Lagrangian relaxations. This integrated methodology not only redefines the
VRPPD-e problems but also presents a new technique to manage workforce in non-profit set-
tings. A promising future avenue for this study would be catering to stochastic availability of
volunteers and dynamic routing in the non-profit food banking sector. Incorporating stochastic
route choice models would enhance the realism of the proposed framework while introducing
additional complexity, particularly in managing volunteers and their routing in real-time. Addi-
tionally, analyzing stochastic fundamental diagrams to account for the stochastic and dynamic
nature of traffic – and its impact on route design – would be a valuable direction for future
research.
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Abstract 

In this paper, a state-of-the-art Deep Decentralized Multi-agent Actor-Critic reinforcement learning with 

Centralized Training and Decentralized Execution architecture is proposed for large-scale infrastructure 

maintenance and rehabilitation (M&R) activity optimization. Expanding on recent advances that capture 

deterioration uncertainty, a limited budget, the effects of M&R activity execution on traffic performance, 

multiple asset classes and other performance and risk constraints, the proposed method explicitly models 

traffic effects on the condition of the roadway network components and enables a proposed active traffic 

flow control strategy based on traffic assignment that can be taken to limit access of the vehicles to 

identified roadway segments. By diverting the traffic to other locations and thus modifying traffic patterns, 

the expected remaining life of these roadway assets can be extended. The potential of the proposed concept 

and solution methodology is applied on a hypothetical case study. 
 

1. Motivation 

Preserving structural integrity and ensuring longevity and reliability of our roadway surface and bridge 

networks through maintenance and rehabilitation (M&R) is a recurring and expensive process that involves 

complex temporal and spatial decisions with system-wide impacts. While prioritization decisions can be 

taken based on component-level health for each asset class (here roadway pavements and bridges), because 

individual contributions of each roadway component  of any asset class contributes to traffic capacity only 

through its collective influence on system performance, M&R actions on individual assets have nonlinear 

system-level impact.  

Assessing the potential impact of the various combinations of M&R actions is computationally 

burdensome, as this involves solving difficult combinatorial problems. Such problems require consideration 

of an exponentially growing number of action combinations and their impacts with increasing network size. 

Further complicating this action-plan scheduling problem is uncertainty in knowledge of current condition 

state and condition-state deterioration of system components into the future, as well as the need to evaluate 

traffic flow impacts. 

Numerous works have proposed algorithms to support the scheduling of M&R actions (e.g., 

Bocchini & Frangopol, 2011; Chu & Chen, 2012; Saydam & Frangopol, 2014; Yang & Frangopol, 2019; 

Mendoza, et al., 2021; Zhou & Wang, 2012) using genetic algorithms, threshold-based approaches, risk-

informed techniques, renewal processes, and decision-trees, among other methods. Despite their important 

merits, many of these approaches suffer from suboptimality and scalability issues, ignore key characteristics 

of deterioration dynamics, and assume certainty in knowledge of future infrastructure condition states.  

In prior research, notable contributions by (Ouyang, 2007) and (Durango-Cohen & Sarutipand, 

2009) incorporated traffic network effects by linking deterioration and maintenance actions with roadway 

conditions, such as pavement roughness. In the former, these traffic effects were integrated through a user 

equilibrium (UE) model embedded within their modeling framework, focusing on an optimal resurfacing 

plan for the highway network. However, the proposed policy iteration method was limited to small-scale 

problems. In the latter, demand was assessed as a function of condition and capacity loss was utilized to 

account for the impacts of deterioration and implemented improvements on roadway conditions. Both 

works assume the existence of a deterministic deterioration process. 

In (Medury & Madanat, 2013), the downtime effects of pavement improvement actions during their 

implementation were considered by accounting for capacity differences due to various maintenance actions. 
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A TD-learning (SARSA) reinforcement learning solution was applied using a simplified traffic model. Ng 

et al. (2009) incorporated capacity loss during maintenance activities in a maintenance planning framework. 

They accounted for downtime associated with the activities over increments of years and proposed a genetic 

algorithm for problem solution. A bi-level optimization approach with UE at the lower-level capturing 

deterioration and downtime effects on traffic was proposed by Chu and Chen (2012), with a threshold-

based maintenance plan used at the upper level. The model presumes a deterministic, continuous 

deterioration process and a tabu search algorithm is proposed to choose from various threshold options. 

More recently, pavement maintenance planning with integrated traffic related effects of the implementation 

of maintenance actions can also be seen in (Aad et al., 2022; Prajapati et al., 2024), with both works using 

deterministic models. 

In recent work by Zhou et al. (2002), limitations of these approaches were addressed. Their work 

proposes a Deep Reinforcement Learning (DRL) methodology for optimizing transportation infrastructure 

maintenance planning while also considering traffic impacts, uncertainty in component deterioration 

mechanisms, multiple asset classes, and traffic capacity loss during improvement action execution. They 

conceptualized the maintenance planning problem through a bilevel formulation that incorporates traffic 

impacts of maintenance actions through a lower-level UE model of traffic conditions. They reformulated 

the problem through a Markov Decision Process (MDP) framing and proposed a powerful Deep Centralized 

Multi-agent Actor-Critic (DCMAC) DRL algorithm for its solution. By realistically capturing traffic, the 

impacts of maintenance activities are properly accounted for in action scheduling. Results of a case study 

demonstrate the effectiveness of their approach, showing significant reductions in both traffic congestion 

and total costs compared to other commonly used solution methods. 

 While these many advancements have been made toward scheduling methods for this complex 

multi-asset M&R application, the problem of continuous need for cost-prohibitive and labor- and material-

intensive M&R actions toward extending the life of roadway networks of pavements and bridges remains. 

Improved scheduling methodologies that can account for real-world characteristics and system-state 

predictions can lead to more efficient use of limited M&R resources through careful action prioritization 

and even cross-asset coordination; however, more is needed to contend with the high costs and labor and 

material needs of maintaining our transportation infrastructure. In this extended abstract, this class of 

problems is revisited.  

 Herein, a state-of-the-art Deep Decentralized Multi-agent Actor-Critic (DDMAC) DRL  (Androitis 

& Papakonstantinou, 2021; Morato et al., 2023) with Centralized Training and Decentralized Execution 

(CTDE) structure is introduced to address this scheduling problem, but with an added traffic flow control 

feature. The DDMAC-CTDE approach is a deep, off-policy actor-critic algorithm that utilizes experience 

replay. It was introduced in (Saifullah et al., 2022, 2024) and is a variation of DCMAC applied in (Zhou et 

al., 2022) and the Decentralized-Partially Observable Markov Decision Process (Dec-POMDP) concept 

described in (Oliehoek et al., 2008) to capture the reality of uncertainties in condition state that remain even 

after inspections.  

 In addition to the novelty of the DDMAC-CTDE solution framework, the scheduling problem is 

expanded in two key dimensions. It captures: (1) the impact of traffic on surface and bridge-deck 

deterioration mechanisms and (2) formulates the M&R problem as a joint M&R scheduling and active 

traffic flow control problem. Thus, the solution provides an M&R scheduling plan that accounts for 

deterioration uncertainty, a limited budget, the effects of M&R activity execution on traffic performance, 

multiple asset classes and other performance and risk constraints as in prior works, but adds two new 

dimensions: that traffic itself explicitly affects the condition of the roadway components and that decisions 

can be taken to limit access of the vehicles to identified roadway segments. By diverting the traffic to other 

locations and thus modifying traffic patterns, the expected remaining life of these roadway assets can be 

extended. The proposed tool is used to show the potential of controlling roadway capacity and, thus, traffic 

flows to better manage roadway system deterioration and repair needs.  
 

2. Methodology 

An integrated framework for large-scale infrastructure M&R activity optimization with active traffic flow 
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control is proposed. The devised approach combines POMDPs, UE modeling, and the DDMAC-CTDE to 

optimize maintenance decisions while implementing active traffic flow control to restrict traffic flows by 

selectively limiting link capacities. Figure 1 gives an overview of the general solution structure. 

While a description of the 

proposed method is beyond the 

scope of this short abstract, several 

core elements are needed to 

address active traffic flow control, 

including specification of traffic 

model deterioration models for 

both pavements and bridge decks 

and cost estimation. Cost 

estimation is complicated here by 

a need to include traffic-related 

costs that are a function of traffic 

flow levels, which are both 

determined through solution of a 

UE problem herein and controlled 

through decisions to limit link 

capacities to preserve link health. 

Longevity is captured through a 

reliability-oriented approach, where transition from a state of non-failure to failure governs the operational 

lifespan of the system. The UE solution is obtained through solution of the traffic assignment problem under 

chosen capacity restrictions through variational inequality (VI) (Smith, 1979; Boyles et al., 2020) and 

solution by the Frank-Wolfe algorithm (Frank et al., 1956). The talk will describe the need for faster traffic 

assignment solution and the potential benefits of dynamic traffic assignment for this application. 
 

3. Illustrative Case Study 

The proposed concept and solution framework were 

applied on a 19-component roadway network (Figure 

2). The problem is characterized by stochastic, non-

stationary dynamics, and partially observable state 

conditions through uncertain outcomes of inspections. 

A decision period of 20 years with a discount rate of γ 

= 0.970 was used. The network includes 15 pavement 

sections with 8 designated as Type I, comparable to 

interstate highways with multiple lanes and high traffic 

volumes, and 7 as Type II, akin to primary highways. Four bridges are included: one Type I bridge situated 

on a Type I route and three Type II bridges on Type II routes. Four maintenance actions per component are 

considered: Do Nothing, Minor Repair, Major Repair, and Reconstruction actions. Active flow control 

actions through capacity changes are also incorporated into the action space, with 100 and 50% available 

capacities when the Do-Nothing action is selected, and 52.2% capacity reduction when maintenance actions 

are performed. The budget ranges from $0.6 to 1.1 billion based on a set of examined scenarios. Results of 

the application show the effectiveness of active traffic flow control at increasing longevity under a given 

budget and that there are chosen paths whose capacities are preserved at the cost of added M&R activity to 

maintain reliable traffic performance for system users.  
 

 

 

Figure 2: Network with 4 bridges and 15 pavement 

sections under given condition state 

Figure 1. DDMAC-CTDE architecture for M&R scheduling with active 

traffic flow control via traffic assignment and capacity restrictions 
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4. Conclusions 

An active traffic flow control strategy combined with the M&R scheduling can significantly improve 

network-level roadway life-cycle performance, It allows for more efficient utilization of M&R monetary, 

labor and material resources by discouraging traffic patterns that include assets that are already deteriorated 

and postponing their repair or replacement for a prolonged period of time. This work contributes to larger 

national and international efforts to extend the life of the world’s costly roadway infrastructure. 
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SHORT SUMMARY 

This study introduces a framework for steering user equilibrium (UE) flow patterns toward a 
system optimal (SO) state by integrating road pricing with path-based incentives. The framework 
is formulated as an optimization model with complementarity constraints, incorporating equity 
considerations at both the network and origin-destination (OD) levels. A column generation (CG)-
based solution approach iteratively explores previously unconsidered paths, enhancing solution 
quality and preventing convergence to local optima. The framework's effectiveness is demon-
strated using the Nguyen-Dupuis network under three scenarios: Base, Network-Equity, and OD-
Equity. Results indicate that while the Base scenario minimizes total travel time, it requires ex-
ternal funding and does not ensure equity. The Network-Equity scenario balances tolls and incen-
tives at the network level with minimal increases in travel time but does not address OD-level 
fairness. In contrast, the OD-Equity scenario ensures equitable toll distribution within OD pairs 
at a negligible cost (<0.02% increase in travel time), underscoring the framework’s potential for 
equitable and efficient traffic management. 
 
Keywords: Incentive scheme, road pricing, system optimum, traffic assignment, traffic 
management, urban transportation network. 

1. INTRODUCTION 

Urbanization and the increasing number of private vehicles have significantly exacerbated traffic 
congestion and air pollution in recent years. While expanding transportation infrastructure could, 
in theory, alleviate congestion and improve air quality, it is often prohibitively expensive and 
impractical due to limited urban space. Additionally, infrastructure expansion tends to induce 
demand, which can ultimately worsen congestion and environmental issues over time. Conse-
quently, researchers have shifted their focus toward optimizing existing infrastructure by redirect-
ing traffic flow from the naturally occurring user equilibrium (UE) pattern to a system optimal 
(SO) flow pattern (Andersson et al., 2018; Cheng et al., 2020; Sunio and Schmöcker, 2017; 
Zangui et al., 2015). 
In a UE state, all travelers between the same origin and destination experience equal travel costs, 
whereas an SO state minimizes total travel cost across the entire network, even if some drivers 
incur higher individual costs. Achieving SO, therefore, requires incentives to encourage drivers 
to take longer or less convenient routes for the greater benefit of the overall system. Traditionally, 
road pricing has been used to influence UE flow patterns toward SO (Bergendorff et al., 1997; 
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Ren et al., 2020; Yang and Huang, 2004; Zangui et al., 2015). However, road pricing often faces 
public resistance due to perceived unfairness and concerns about inequitable welfare distribution 
(May et al., 2010; Vosough et al., 2022). 
Recently, incentive-based approaches have gained popularity as an alternative (Ettema et al., 
2010; Leblanc and Walker, 2013; Sun et al., 2020). Incentives can be implemented using either 
link-based or path-based strategies (Luan et al., 2023), with research indicating that path-based 
incentives are more effective in achieving desired outcomes (Niroumand et al., 2024). A com-
bined approach, integrating both monetary incentives and road pricing, can provide a balanced 
solution by leveraging the advantages of both methods. Furthermore, toll revenues collected 
through road pricing can be reinvested into the community as part of the incentivization scheme, 
fostering broader public acceptance and promoting equitable outcomes. 
This study presents a framework for shifting UE flow patterns toward SO by employing a com-
bination of road pricing and path-based incentives. The proposed approach is formulated as an 
optimization model with complementarity constraints, incorporating equity considerations at both 
the network and OD levels. A column generation (CG)-based solution method is used to ensure 
computational efficiency and scalability. 

2. PROBLEM FORMULATION 

This section presents an optimization model designed to determine the optimal path incentives 
and tolls required to shift the UE flow pattern toward the SO, while adhering to budget and max-
imum path toll constraints. The transportation network is modeled as a graph 𝐺𝐺(𝑉𝑉,𝐴𝐴), where 𝑉𝑉 
denotes the set of nodes, and 𝐴𝐴 ⊂ 𝑉𝑉 × 𝑉𝑉 represents the set of links. The set of OD pairs is defined 
as 𝑊𝑊 ⊂ 𝑉𝑉 × 𝑉𝑉, with a fixed travel demand 𝑞𝑞𝑤𝑤 for each OD pair 𝑤𝑤 ∈ 𝑊𝑊. The set of all paths 
between a specific OD pair 𝑤𝑤 ∈ 𝑊𝑊 is denoted by 𝑃𝑃𝑤𝑤. The decision variables in the optimization 
model are 𝑓𝑓𝑤𝑤

𝑝𝑝, 𝑦𝑦𝑤𝑤
𝑝𝑝, and 𝑦𝑦�𝑤𝑤

𝑝𝑝, which correspond to the vehicle flow, toll, and incentive assigned to 
path 𝑝𝑝 ∈ 𝑃𝑃𝑤𝑤 for OD pair 𝑤𝑤 ∈ 𝑊𝑊, respectively. Additionally, the travel cost and flow on a link 𝑎𝑎 ∈
𝐴𝐴 are denoted as 𝑡𝑡𝑎𝑎 and 𝑥𝑥𝑎𝑎, respectively. The following formulation represents the proposed prob-
lem. 

𝑍𝑍 =  min
𝒇𝒇,𝒚𝒚,𝒚𝒚�

�(𝑥𝑥𝑎𝑎𝑡𝑡𝑎𝑎)
𝑎𝑎∈𝐴𝐴

  (1) 

∑ 𝑓𝑓𝑤𝑤
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑤𝑤 = 𝑞𝑞𝑤𝑤  ∀ 𝑤𝑤 ∈ 𝑊𝑊 (2) 

∑ (𝛿𝛿𝑎𝑎
𝑝𝑝𝑡𝑡𝑎𝑎)𝑎𝑎∈𝐴𝐴 + 𝑦𝑦𝑤𝑤

𝑝𝑝 − 𝑦𝑦�𝑤𝑤
𝑝𝑝 − 𝑢𝑢𝑤𝑤 ≥ 0  ∀ 𝑝𝑝 ∈ 𝑃𝑃𝑤𝑤 ,  𝑤𝑤 ∈ 𝑊𝑊 (3) 

�∑ �𝛿𝛿𝑎𝑎
𝑝𝑝𝑡𝑡𝑎𝑎�𝑎𝑎∈𝐴𝐴 + 𝑦𝑦𝑤𝑤

𝑝𝑝 − 𝑦𝑦�𝑤𝑤
𝑝𝑝 − 𝑢𝑢𝑤𝑤�𝑓𝑓𝑤𝑤

𝑝𝑝 = 0  ∀ 𝑝𝑝 ∈ 𝑃𝑃𝑤𝑤 ,  𝑤𝑤 ∈ 𝑊𝑊 (4) 

𝑦𝑦𝑤𝑤
𝑝𝑝 ≤ 𝑇𝑇 ∀ 𝑝𝑝 ∈ 𝑃𝑃𝑤𝑤 ,  𝑤𝑤 ∈ 𝑊𝑊 (5) 

∑ ∑ 𝑦𝑦�𝑤𝑤
𝑝𝑝𝑓𝑓𝑤𝑤

𝑝𝑝
𝑝𝑝∈𝑃𝑃𝑤𝑤𝑤𝑤∈𝑊𝑊 ≤ 𝐵𝐵   (6) 

𝑥𝑥𝑎𝑎 = ∑ ∑ 𝛿𝛿𝑎𝑎
𝑝𝑝𝑓𝑓𝑤𝑤

𝑝𝑝
𝑝𝑝∈𝑃𝑃𝑤𝑤𝑤𝑤∈𝑊𝑊   ∀ 𝑎𝑎 ∈ 𝐴𝐴 (7) 

𝑡𝑡𝑎𝑎 = 𝑡𝑡𝑎𝑎(𝑥𝑥𝑎𝑎) ∀ 𝑎𝑎 ∈ 𝐴𝐴 (8) 

∑ ∑ 𝑦𝑦�𝑤𝑤
𝑝𝑝𝑓𝑓𝑤𝑤

𝑝𝑝
𝑝𝑝∈𝑃𝑃𝑤𝑤𝑤𝑤∈𝑊𝑊 = ∑ ∑ 𝑦𝑦𝑤𝑤

𝑝𝑝𝑓𝑓𝑤𝑤
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑤𝑤𝑤𝑤∈𝑊𝑊    (9) 
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∑ 𝑦𝑦�𝑤𝑤
𝑝𝑝𝑓𝑓𝑤𝑤

𝑝𝑝
𝑝𝑝∈𝑃𝑃𝑤𝑤 = ∑ 𝑦𝑦𝑤𝑤

𝑝𝑝𝑓𝑓𝑤𝑤
𝑝𝑝

𝑝𝑝∈𝑃𝑃𝑤𝑤   ∀ 𝑤𝑤 ∈ 𝑊𝑊 (10) 

Objective function (1) minimizes the total travel time in the network with respect to path flows, 
incentives, and tolls. Constraints (2) guarantee flow feasibility by ensuring that all travelers get 
to their predefined destinations. Constraints (3) and (4) serve as complementarity constraints to 
enforce a UE flow pattern, ensuring that the generalized travel times are equal across all used 
paths. The generalized travel time of a path is calculated as the summation of the actual travel 
times of its constituting links (∑ 𝛿𝛿𝑎𝑎

𝑝𝑝𝑡𝑡𝑎𝑎𝑎𝑎∈𝐴𝐴 ) plus the toll assigned to it (𝑦𝑦𝑤𝑤
𝑝𝑝) minus its assigned 

incentive (𝑦𝑦�𝑤𝑤
𝑝𝑝). Here 𝛿𝛿 represents the path-link incidence matrix, where 𝛿𝛿𝑎𝑎

𝑝𝑝 equals one if link 𝑎𝑎 
is on path 𝑝𝑝, and zero otherwise. Constraints (5) impose an upper limit on the toll assigned to 
each path to mitigate public dissatisfaction with excessive toll charges. Constraints (6) ensure 
that the total incentives provided do not exceed the available budget, maintaining financial fea-
sibility. Constraints (7) define link flows as a function of path flows, while constraints (8) specify 
link travel times based on link flows.  
Equity considerations are incorporated through constraints (9) and (10) at both the network and 
OD-pair levels, respectively. Constraints (9) guarantee that the total toll revenue collected is 
fully redistributed as incentives, upholding the principle of reinvesting funds collected from us-
ers back into the system to enhance overall user benefits. Constraints (10) further extend the 
equity by requiring that toll collection and incentive distribution are balanced for each OD pair. 
This provision guarantees that travelers have equitable access to both options: a shorter, tolled 
route or a longer route with monetary incentives, promoting fairness in route selection. 

3. SOLUTION TECHNIQUE 

A CG technique is introduced to solve the optimization model defined by equations (1) – (10), 
allowing for the dynamic creation of new paths as the algorithm advances. While CG can reach 
optimality by enumerating all paths (Desaulniers et al., 2006), it can be terminated when the 
improvements between iterations fall below a predefined threshold, effectively balancing com-
putational efficiency and solution accuracy.  
The solution framework begins with an empty set of working paths. At each iteration, the algo-
rithm identifies and adds a new path for each OD pair as a column, continuing for a minimum 
of 𝑁𝑁 iterations. The process terminates when the relative difference in total travel time between 
two consecutive iterations falls below a predefined threshold 𝜖𝜖. The proposed CG-based ap-
proach ensures that the shortest path not yet included in the current working set is identified and 
added at each iteration. This guarantees that a new path is introduced to the solution space, even 
if it has a longer travel time, as such paths may benefit from incentives and contribute to a re-
duction in overall network travel time. Furthermore, the minimum iteration count 𝑁𝑁 is chosen 
to ensure that a sufficient number of paths are generated between each OD pair before the algo-
rithm halts, enhancing solution robustness. The steps of the proposed algorithm are as follows. 

1. Initialization: 

i. Define values for 𝑁𝑁 and 𝜖𝜖 

ii. Set 𝑃𝑃𝑤𝑤 = ∅, 𝑛𝑛 = 1, 𝑦𝑦 = 0, 𝑓𝑓 = 0, 𝑥𝑥0 = 𝑥𝑥(𝑓𝑓), and 𝑡𝑡0 = 𝑡𝑡(𝑥𝑥0) 

2. Finding Shortest paths: for each OD pair 𝑤𝑤 ∈ 𝑊𝑊, 

i. Find the shortest path 𝑝𝑝 such that 𝑝𝑝 ∉ 𝑃𝑃𝑤𝑤, 

ii. Set 𝑃𝑃𝑤𝑤 = 𝑃𝑃𝑤𝑤 ∪ 𝑝𝑝 
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3. Finding UE: solve the optimization model and find path flows 𝒇𝒇 along with their corre-
sponding toll 𝒚𝒚 and incentive 𝒚𝒚�. 

4. Update: set 𝒙𝒙𝒏𝒏 = 𝒙𝒙(𝒇𝒇) and 𝒕𝒕𝒏𝒏 = 𝒕𝒕(𝒙𝒙𝒏𝒏). 

5. Stopping criteria 

i. Calculate 𝜖𝜖̅ = |∑ (𝑥𝑥𝑎𝑎𝑛𝑛𝑡𝑡𝑎𝑎𝑛𝑛)𝑎𝑎∈𝐴𝐴 −∑ (𝑥𝑥𝑎𝑎𝑛𝑛−1𝑡𝑡𝑎𝑎𝑛𝑛−1)𝑎𝑎∈𝐴𝐴
∑ (𝑥𝑥𝑎𝑎𝑛𝑛𝑡𝑡𝑎𝑎𝑛𝑛)𝑎𝑎∈𝐴𝐴

 

ii. If 𝜖𝜖̅ ≤ 𝜖𝜖 and 𝑛𝑛 ≥ 𝑁𝑁 stop, otherwise set 𝑛𝑛 = 𝑛𝑛 + 1 and go to Step 2. 

In Step 2 of the proposed algorithm, a new path that is not part of the current working path set 
is identified to prevent convergence to a local optimum. Since this path cannot be found through 
conventional shortest path algorithms, we formulate and solve the integer optimization problem 
presented in equations (11) - (14). This approach ensures that the previously unexplored shortest 
path between each OD pair is systematically added to the working path set, enhancing the overall 
solution quality. 

𝜏𝜏𝑤𝑤 =  min
𝜷𝜷

�(𝛽𝛽𝑎𝑎𝑡𝑡𝑎𝑎)
𝑎𝑎∈𝐴𝐴

  (11) 

� 𝛽𝛽𝑎𝑎
𝑎𝑎∈𝐴𝐴:𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎)=𝑣𝑣

− � 𝛽𝛽𝑎𝑎′
𝑎𝑎′∈𝐴𝐴:𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎′)=𝑣𝑣

= �
+1               𝑖𝑖𝑖𝑖 𝑣𝑣 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
−1    𝑖𝑖𝑖𝑖 𝑣𝑣 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

0                                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 , ∀ 𝑣𝑣 ∈ 𝑉𝑉 (12) 

∑ (𝛿𝛿𝑎𝑎
𝑝𝑝 − 𝛽𝛽𝑎𝑎)𝑎𝑎∈𝐴𝐴 ≤ 1,  ∀ 𝑝𝑝 ∈ 𝑃𝑃𝑤𝑤 (13) 

𝛽𝛽𝑎𝑎 ∈ {0,1}, ∀ 𝑎𝑎 ∈ 𝐴𝐴 (14) 

where, 𝛽𝛽𝑎𝑎 is a binary variable that equals one if link 𝑎𝑎 is part of the shortest path and zero 
otherwise. The objective function (11) aims to identify the shortest path by selecting a combi-
nation of links that minimizes travel time. Constraints (12) ensure that the resulting solution 
forms a continuous path rather than a disconnected set of links. In these constraints, start(𝑎𝑎) and 
end(𝑎𝑎) represent the starting and ending nodes of link 𝑎𝑎 ∈ 𝐴𝐴, respectively. Constraints (13) pre-
vent the selection of any path that already exists in the current working path set to ensure that a 
new, previously unexplored path is generated. 

4. RESULTS AND DISCUSSION 

The proposed methodology is implemented on the Nguyen-Dupuis network illustrated in Figure 
1. This network comprises 13 nodes, 19 links, and 4 OD pairs. We are working on applying the 
approach to Sioux-Falls and Austin, TX network to be included in the full paper. The link travel 
time function is assumed to follow the BPR function (Manual, 2000), expressed as: 

𝑡𝑡𝑎𝑎(𝑥𝑥𝑎𝑎) = 𝑡𝑡𝑎𝑎0 �1 + 0.15 �𝑥𝑥𝑎𝑎
𝐶𝐶𝑎𝑎
�
4
�, ∀ 𝑎𝑎 ∈ 𝐴𝐴 (15) 

where 𝑡𝑡𝑎𝑎0 represents the free flow travel time and 𝐶𝐶𝑎𝑎 is the capacity of link 𝑎𝑎 ∈ 𝐴𝐴. The link 
properties used in the BPR function and the demand between OD pairs are sourced from (Luan 
et al., 2023). 
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Figure 1: Nguyen-Dupuis network 

We define three scenarios based on equity constraints: Base, Network-Equity, and OD-Equity. 
The Base scenario excludes equity considerations by solving the optimization model defined by 
equations (1) to (8), without incorporating the equity constraints specified in (9) and (10). The 
Network-Equity scenario promotes system-wide equity by redistributing toll revenues as incen-
tives across the entire network, aligning with the optimization model outlines in equations (1) 
through (9). Finally, the OD-Equity scenario focuses on ensuring that toll revenues collected 
from users of a specific OD pair are redistributed among users of the same OD pair. This scenario 
is modeled using the optimization model defined by equations (1) to (8) and (10). 
Table 1 summarizes the total travel time, total toll revenue, and total incentives expended under 
varying path toll caps and budget limits in the base scenario, where equity considerations are not 
incorporated. Notably, the scenario with zero budget and zero tolls corresponds to the naturally 
occurring UE flow pattern, resulting in a total travel time of 181,430.87 time units. In contrast, 
the SO flow pattern achieves a total travel time of 179,589.29 time units. The results demonstrate 
that increasing both the budget limit and the path toll cap leads to a reduction in total travel time. 
Furthermore, a combined approach utilizing both tolling and incentivization appears more ef-
fective in achieving optimal network performance. For example, achieving the minimum total 
travel time across the network requires 5,680.87 time units of monetary incentives. However, 
allowing a maximum toll of 2 time units per path significantly reduces the required budget for 
incentives to 2,978.21 time units. 
We analyzed the impact of incorporating equity considerations using a case study with a budget 
limit of 2,000 time units and a path toll cap of 2 time units. The results, including total travel 
time, total toll revenue, and total distributed incentives, are presented in Table 2. As anticipated, 
the Base scenario yields the lowest total travel time across the entire network and between all 
OD pairs. However, under this scenario, the total toll revenue amounts to nearly half of the 
distributed incentives, necessitating external funding to sustain the incentivization scheme. Ad-
ditionally, travelers between OD pairs 1-2 and 4-3 receive fewer incentives than the tolls they 
pay, highlighting an imbalance in the distribution of benefits. The Network-Equity scenario en-
sures that total toll revenue matches the total distributed incentives, achieved with a minimal 
increase in total travel time. Nevertheless, this scenario does not address the inequitable distri-
bution of tolls and incentives at the OD pair level. In contrast, the OD-Equity scenario ensures 
that toll revenue equals distributed incentives for each OD pair, resulting in a fairer distribution 
across users. This equitable allocation offers travelers the choice between shorter routes with 
toll payments and longer routes with incentives. Notably, the equity-driven adjustments result 
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in a negligible increase in total travel time, accounting for less than 0.02% of the overall travel 
time. 
 

Table 1: Total travel time, total toll revenue, and total incentive with different 
toll cap and budget under the base scenario 

 Budget (incentive limit) 
0 1000 2000 3000 4000 5000 6000 

M
ax

im
um

 p
at

h 
to

ll 

0 
Total travel time 181430.9 180107.1 179781.0 179666.9 179615.2 179593.5 179589.3 

Total toll 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Total incentive 0.0 1000.0 2000.0 3000.0 4000.0 5000.0 5680.9 

1 
Total travel time 180692.3 179791.8 179667.0 179606.4 179590.2 179589.3 179589.3 

Total toll 1144.3 809.7 800.5 648.8 641.3 568.2 434.1 
Total incentive 0.0 1000.0 2000.0 3000.0 4000.0 4249.1 4315.0 

2 
Total travel time 180202.4 179653.8 179596.0 179589.3 179589.3 179589.3 179589.3 

Total toll 2398.8 985.1 1004.0 897.3 264.3 868.2 264.3 
Total incentive 0.0 1000.0 2000.0 2978.2 3545.3 2629.1 3545.2 

3 
Total travel time 179892.1 179591.6 179589.3 179589.3 179589.3 179589.3 179589.3 

Total toll 3327.4 1717.4 1689.9 608.0 1596.0 1404.1 608.0 
Total incentive 0.0 1000.0 1610.8 2929.0 1796.9 1605.1 2928.9 

4 
Total travel time 179713.8 179589.3 179589.3 179589.3 179589.3 179589.3 179589.3 

Total toll 3641.7 1909.2 2289.2 2068.1 527.7 893.8 1828.9 
Total incentive 0.0 1000.0 1250.3 1029.2 2048.7 2094.8 1270.0 

5 
Total travel time 179722.9 179589.3 179589.3 179589.3 179589.3 179589.3 179589.3 

Total toll 4397.8 1363.0 2591.7 2019.3 2121.0 2344.7 2344.8 
Total incentive 0.0 964.0 872.7 980.4 1082.1 625.8 625.9 

6 
Total travel time 179592.0 179589.3 179589.3 179589.3 179589.3 179589.3 179589.3 

Total toll 4190.3 1895.6 1696.1 1228.9 1588.6 2631.6 1134.3 
Total incentive 0.0 856.6 2000.0 2109.9 1189.7 712.6 2335.4 

 

Table 2: Total travel time, total toll revenue, and total incentive with a budget 
limit of 2000 and path toll cap of 2 time units under different equity considera-

tion scenarios 
Scenario Metric Network Origin - Destination 

1-2 1-3 4-2 4-3 

Base 
Total incentive 2000.00 0.00 1280.32 616.52 103.16 
Total toll 1003.99 61.72 271.75 541.85 128.67 
Total travel time 179596.02 32630.73 86618.50 41935.62 18411.17 

Network-equity 
Total incentive 1924.06 40.70 381.91 491.61 1009.83 
Total toll 1924.06 632.24 745.79 546.03 0.00 
Total travel time 179615.21 32430.36 85791.58 41968.85 19424.42 

OD-equity 
Total incentive 1924.70 283.01 821.15 605.99 214.56 
Total toll 1924.70 283.01 821.15 605.99 214.56 
Total travel time 179635.95 32874.29 86456.90 41975.50 18329.26 

5. CONCLUSIONS 

This study presents a comprehensive framework for steering user equilibrium (UE) flow patterns 
toward a system optimal (SO) state by integrating road pricing and path-based incentives. The 
framework is formulated as an optimization model with complementarity constraints, 
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incorporating equity considerations at both the network and origin-destination (OD) levels. The 
proposed model is solved using a column generation (CG)-based solution technique, which iter-
atively generates previously unexplored paths to enhance solution quality and avoid local optima. 
The effectiveness of the proposed approach is demonstrated through its application to the Ngu-
yen-Dupuis network, analyzed under three scenarios: Base, Network-Equity, and OD-Equity. Re-
sults indicate that while the Base scenario achieves the lowest total travel time, it requires external 
funding to sustain the incentive scheme and fails to ensure a fair toll-incentive distribution. The 
Network-Equity scenario balances total toll revenue and distributed incentives at the network 
level, with only a negligible increase in total travel time. However, this approach does not address 
fairness at the OD level. In contrast, the OD-Equity scenario ensures that toll revenues are redis-
tributed equitably within each OD pair, allowing travelers to either choose shorter routes with 
tolls or opt for longer routes with incentives. Notably, the cost of achieving OD-level equity is 
minimal, resulting in less than a 0.02% increase in total travel time. 
While the improvements observed in this study are promising, the difference between SO and UE 
solutions is relatively modest, at only 1%. To further evaluate the potential of this approach, we 
are currently applying the proposed method to the Sioux-Falls and Austin, TX networks, testing 
the formulation and solution technique under more complex and challenging conditions. 
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1 Introduction

As automation and communication progress, the management and planning of very large regional-sized trans-
portation networks becomes an increasingly important issue. The ability to solve Dynamic Traffic Assignment
(DTA) problems on such netwoks is crucially important for regional authorities. Solving DTA problems on very
large networks turns out to be a very diffucult task, to which much research has been devoted, notably when using
microscopic models. Refer for instance to Ameli et al. [2020]. Using simplified macroscopic models constitutes a
promising approach Yildirimoglu et al. [2015], Ehteram et al. [2017], Balzer et al. [2023], Hassanin [2025]. Bidi-
mensional models provide a first paradigm. This technique was initiated in [Taguchi and Iri, 1982] (operational
research flow assignment problems), then adapted to static and dynamic mono-centric traffic flow problems Ho and
Wong [2006], Jiang et al. [2011], Mollier et al. [2019]. Multi-directional flow modelling has been considered in
Saumtally et al. [2013], Khoshyaran and Lebacque [2020, 2025]. The MFD (macroscopic fundamental diagram)
approach provides a second, much studied, paradigm, Geroliminis and Daganzo [2008], Geroliminis et al. [2013],
Aghamohammadi and Laval [2019], Huang et al. [2020]. MFD techniques have evolved into several directions,
accumulation-based models, trip-based models and delay-based models, refer to Huang et al. [2024].
The model developped in this paper is connected to trip-based models Mariotte and Leclercq [2017], Mariotte
et al. [2017] We will also use some tools from the related generalized bathtub model Jin [2020]. The considered
network is described as a set of reservoirs, each of them endowed with a MFD, and traffic from one reservoir to an
adjacent reservoir is described as propagating along a mean trip joining the reservoir centroids. This representation
allows for FIFO dynamics and is thus well-adapted to DTA problems. Indeed in DTA problems it is necessary to
keep track of the composition of traffic in terms of destination, assignment choices and possibly departure times
of travellers. The DTA model proposed in the paper follows the approch developped in Khoshyaran and Lebacque
[2023, 2025]: the route choice is based on instantaneous travel costs, whereas the departure time choice is based
on predictive travel costs. It will be shown that these costs can readily be obtained within the framework of the
model.

2 Outline of the model

Denote by R the set of reservoirs, including the reservoirs describing the considered network plus a special reser-
voir Ω representing all that is outside of the network. Given a reservoir (i) ∈ R, we denote by Γ+

i ⊂ R the set of
successor reservoirs of (i), that is ( j) ∈ Γ+

i if there is a non-empty interface (i) − ( j) through which vehicles can
travel directly (i)→ ( j). By definition (i) is then a predecessor of ( j), that is (i) ∈ Γ−j . The model assumes a specific
trip length `i for travellers inside a reservoir (i), bound for a reservoir ( j) ∈ Γ+

i . The number of these travellers is
given by Mi j + Ni j (functions of time), possibly disaggregated with respect to an attribute e ∈ E:

Mi j =
∑
e∈E

Me
i j Ni j =

∑
e∈E

Ne
i j

1
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Figure 1: Reservoirs and associated quantities

Refer to Figure 1. Typically the traveller attribute e is a vector, the components of which will be destination d ∈ D
or route p ∈ P (depending on the assignment behaviour), and desired arrival time ta ∈ Ta. Thus e = (d, ta) or
e = (p, ta). Let us define some further elements of description of the reservoirs.

• Ni
de f
=

∑
( j)∈Γ+

i
Mi j +

∑
(k)∈Γ−i

Nki : the total accumulation in reservoir (i);

• `i j: the common mean trip length perceived by travellers travelling (i) → ( j) . A refinement of the model
could be to consider a distribution of trip lengths (i) → ( j) as in the generalized bathtub model [Jin, 2020],
Ameli et al. [2022].

• νe
i j(`) d` : the distribution of accumulation along the (i) → ( j) trips pertaining to attribute (e) ∈ E. We also

denote νi j(`)
de f
=

∑
e∈E ν

e
i j(`). Thus we define

Me
i j =

∫ Ii j

0
νe

i j(`) d` Ne
i j =

∫ `i j

Ii j

νe
i j(`) d` ; Mi j =

∫ Ii j

0
νi j(`) d` Ni j =

∫ `i j

Ii j

νi j(`) d` (1)

where Ii j denotes the mean trip length inside reservoir (i) of travellers (i) → ( j). This concept allows us
to keep track of the progress of traffic per destination and to respect FIFO (first-in-first-out) discipline for
traffic in reservoirs, which is necessary when solving DTA problems.

• The setW of ODs (origin-destination couples) is a subset of R × R. If w ∈ W the set Pw denotes the set of
paths joining the OD w. Thus a path is defined as a succession of reservoirs.

Let us now outline the traffic dynamics.

• First we need to define assignment coefficients γe
i j,k (which are function of λ ∈ [o, `i j] and of time t): the

fraction of traffic (i)→ ( j) chosing k ∈ Γ+
j given their attribute e.

• Let us define concepts of supply and demand for reservoir. One possibility would be to adopt the concepts
of supply and demand introduced in [Khoshyaran and Lebacque, 2025], based on the capacity attributes of
the interfaces between reservoirs. In this paper we propose a simpler approach. We call partial demand δi j

the demand of traffic Mi j. We propose the following expression

δi j
de f
=

Ni j

Ni
∆i (Ni) .

Mi j +
∑

k∈Γ−i ,e∈E

γe
ki, jN

e
ki, j

 (2)

where ∆i denotes the global demand of the reservoir (i) as could be deduced from the MFD (macroscopic
fundamental diagram) of the reservoir. (2) expresses a GSOM rule for partial flows (proportional to com-
position of traffic). Since we normalize with respect to Ni we need to consider all travellers liable to travel
(i)→ ( j).

2



• Similarly we define the donstream partial supplyσi j
de f
= βi jΣ j(N j) as a fraction of the total supply of reservoir

( j) in accordance with the STRADA model Buisson et al. [1995]. We can deduce by the min principle the
flow qi j : (i) → ( j) which applies naturally at location λ = Ii j at the interface between (i) and ( j), and from
the flow qi j we deduce the speed vi j of traffic (i)→ ( j):

qi j = min
[
δi j, σi j

]
vi j = qi jIi j/Mi j (3)

In keeping with the idea of trip-based modelling this speed is assumed to be independent of λ. Given (2) it
can be shown that the speed vi j is less than the maximum speed in reservoir (i).

• The composition νe
i j is advected at speed vi j, hence follows an advection equation

∂tν
e
i j + vi j∂λν

e
i j = 0 (4)

The outflows (i)→ ( j) result: pe
i j = vi jν

e
i j(`i j). Let us denote by Πe

i j the inflow of travellers into the reservoir
(i) from outside the network (parkings etc) chosing ( j) as the next reservoir of their trip. Then the inflows
re

i j into (i)→ ( j) are given by

re
i j = Πe

i j +
∑

k∈Γ−i ,e∈E

γe
ki, j p

e
ki, j (5)

These inflows define the boundary conditions for (4): νe
i j(λ)| λ=0 = re

i j/v
e
i j.

3 Dynamic traffic assignment.

The data of the problem is given by the total demand Dta
w , with ta ∈ Ta the desired arrival times and w ∈ W the

OD. This total demand must be disaggregated with respect to departure time t ∈ Td, the distribution of departure
times is denoted ϕta

w(t)dt (which is positive and of total mass equal to 1). This distribution will be the result of the
departure time choice, based on predictive travel costs.
We also denote $ta

wp(t) the fraction of traffic with attributes w ∈ W, desired arrival time ta ∈ Ta, chosing path
p ∈ Pw at departure time t. The route choice will result from instantaneous travel costs. With these definitions

Πe
i j(t) =

∑
w/(i)=O(w)

∑
p∈Pw,(i j)∈p

$ta
wp(t)ϕta

w(t)Dta
w (6)

(O(w) denotes the origin of w). Thus the main unknowns of the DTA problem are ϕ,$.
Travel costs equal travel times plus early/late arrival time penalty. Thus it is necessary to estimate the travel costs.

Consider a path p = (a0, a1, . . . , aK) and denote `k
de f
= `ak−1,ak , vk

de f
= vak−1,ak . The instantaneous travel time of p is

given by:

ITTp(t) =

K∑
k=1

`k/vk (7)

The predictive travel time PTT is calculated a posteriori. One possible idea is to use the tools of Jin [2020] and
Ameli et al. [2022]. First define

zk(t) =

∫ t

0
vk(s)ds (8)

then the recursion ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t0 = t
...

tk = z−1
k (zk−1(tk−1) + `k)

...

tK = z−1
K (zK−1(tK−1) + `K)

(9)
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yields the predictive travel time PTTp(t) = tK . The path predictive travel cost results by adding the late/early arrival
time penalty, which will be a function of the difference tK − ta. The OD predictive travel cost will be obtained
as the expectation of path predictive travel costs for all paths of the OD. The expectation is then calculated with
respect to $.
Finally the equilibrium is obtained following the method described in Khoshyaran and Lebacque [2023, 2025].

4 Numerical experiments, outlook

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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Figure 2: Left: network with 7 reservoirs, 2 destinations, 2 origins, 7 paths. Right: cumulated departure time distribution
(for the two destinations) at equilibrium, with Logit assignment.
The model will be implemented and compared to the bidimensional model developed in Khoshyaran and Lebacque
[2025], notably on the network depicted in Figure 2. The classical issues: existence of equilibria, discretization
of the model, will also be studied. The right part of Figure 2 shows some results: stochastic user equilibrium was
achieved after some 30 iterations and the resulting equilibrium departure time distributions (the ϕ are depicted per
destination and cumulated over the two origins).
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1. Introduction

Real-time urban traffic management has to operate in a complex, dynamic environment charac-
terized by complex network conditions, various data types, multiple spatial scales, and diverse external
disturbances such as accidents, incidents, and extreme events. In developing and deploying an intelligent
traffic system to deal with that multifaceted environment, dynamic traffic assignment (DTA) plays an es-
sential role. The main role of dynamic traffic assignment is to reproduce vehicles’ movements according
to certain behavioral rules given the prevailing traffic conditions [1]. By capturing time-varying route
choices and network flows, DTA yields realistic traffic representations that underpin models for emis-
sions, safety, and resilience, thereby supporting comprehensive policy analysis and decision-making.

However, there are two primary challenges when applying DTA in the context of intelligent traffic
management systems. First, integrating multi-level DTA models in a digital twin remains difficult. Traf-
fic modeling spans macroscopic models that capture aggregate flows, mesoscopic models that balance
detail and efficiency, and microscopic models that simulate individual vehicle interactions. Seamlessly
coupling these scales while producing results that are consistent with the real world is challenging due
to differences in representation and computational demands. Second, real-time data integration can be
problematic. Although traffic data is abundant, the inherent noise and heterogeneity complicate the con-
tinuous calibration, validation, and updating tasks of various components of the underlying components
of DTA models.

To overcome these challenges and advance the practice of intelligent traffic management, we pro-
pose a hybrid DTA-based digital twin framework that integrates multi-scale DTA with AI-based real-
time data processing and AI-driven decision-support functions for online deployment. The framework
comprises four modules: AI-based data ingestion and fusion, multi-scale DTA, on and offline calibration
of DTA, and AI-powered decision support. A key contribution is the integration of DTA Lite developed
by Zhou et al. (2014) [2] into the DT-ATeam platform developed by Bian et al. (2024) [3, 4], transform-
ing an offline planning tool into a dynamic, real-time system capable of generating and evaluating mul-
tiple scenarios, especially in the presence of major incidents and extreme events. By utilizing real-time
sensing and AI predictions, this framework transforms diverse sensor data into structured DTA inputs.
It connects various simulation scales and aligns outputs with field observations, providing actionable
insights for traffic planning, control, and service. This approach significantly enhances real-time urban
traffic management.

2. Related Work

Based on extensive studies [1, 5, 6, 7, 8], the network modeling models in DTA (traffic flow sim-
ulation software serves as the network loading component in DTA [9, 1]) can be classified into three
levels: macroscopic (e.g., (M–N model) [10], link performance functions [11], METANET [12], the
Lighthill–Whitham–Richards (LWR) model [13, 14], and simplified traffic flow representations as seen
in MATSim [15]), mesoscopic (e.g., MATSim, DTALite[2], and certain modules of SUMO [16]), and
microscopic (e.g., VISSIM [17], MITSIMLab[18], and SUMO). To better combine the advantages of
multilevel DTA models, more researchers have advanced multiscale DTA frameworks [19, 20, 21, 22,
5, 8]. [23] developed a feedback loop that integrates strategic route planning with microsimulation for
daily replanning under congestion. [8] proposed a co-simulation framework that connects traffic and
network simulations via a run-time infrastructure and federation object model, enhancing interoperabil-
ity and enabling analysis of wireless vehicle communication impacts. [5] extended [24]’s framework
by incorporating vehicles and using the CRIO meta-model to automatically adjust simulation resolution
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across microscopic, mesoscopic, and macroscopic scales through an influence-reaction mechanism. [9]
introduced a simulator that directly integrates macroscopic and microscopic models into a differentiable
framework by computing gradients for traffic states, thereby accelerating optimization and improving
scalability for complex traffic control problems.

In summary, current research on hybrid DTA highlights several potential areas for improvement.
First, despite advances in multi-level DTA, a comprehensive AI-driven framework that effectively bridges
microscopic, mesoscopic, and macroscopic DTA results into a digital twin is still needed. Second, align-
ing DTA inputs and calibrations with real-time field data remains a challenge. Reliable methods are
necessary to convert raw sensor data into actionable DTA inputs and to continuously adjust DTA models
with real-time observations. Third, it is necessary to translate multiscale DTA outputs into actionable
guidance for traffic real-time management, as systematic frameworks linking DTA results with ancillary
models (e.g., for emissions, safety, or resilience) are absent. Addressing these areas for improvement is
crucial for fully realizing the potential of hybrid DTA-based digital twin frameworks in both operational
and strategic traffic.

3. Methodology

Figure 1: Framework

Based on DT-ATEAM developed by [3, 4], we propose a hybrid DTA-based digital twin framework
for intelligent traffic management, as shown in Fig. 1. The framework is composed of four key modules:
(1) AI-based data ingestion and fusion, (2) multi-scale DTA, (3) on- and off-line calibration of DTA
functions, (4) AI-powered decision support.

3.1 Data Ingestion and Fusion

Our framework begins with a data ingestion task that continuously acquires real-time information
from heterogeneous sensors, including mobile devices (e.g., smartphone GPS, fleet telematics), infras-
tructure sensors (e.g., inductive loop detectors, RFID, Bluetooth), and spatial sensors (e.g., cameras,
UAVs, satellite imagery). The ingested data are then cleaned and standardized using anomaly detection,
imputation, and normalization. Outliers are identified with clustering or autoencoder models. We use
Kalman filtering and interpolation methods (e.g., linear, spline, and polynomial interpolation) to ad-
dresses the issues related to missing or erroneous values. Camera feeds are processed with CNN-based
object detection to classify incidents, and text sources are parsed with natural language processing to
extract key details. Finally, AI-driven fusion methods aggregate these data into unified traffic-state vari-
ables (e.g., link speed, density, flow) at specified temporal and spatial resolutions. Ensemble techniques,
such as gradient boosting, random forests, and neural networks, synthesize redundant inputs to yield
robust predictions, which serve as the primary input for our hybrid DTA environment and as a reference
for calibrating DTA outputs.
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3.2 Multi-Scale Dynamic Traffic Assignment with Bridging Mechanisms

To capture both regional congestion patterns and localized vehicle interactions, our framework in-
tegrates a macroscopic DTA model (e.g., MATSim) for network-wide demand and route assignment, a
mesoscopic model (e.g., DTALite) for intermediate resolution, and a microscopic model (e.g., SUMO)
for vehicle-level dynamics. Achieving consistency across these scales in near real time requires a dedi-
cated bridging mechanism that periodically exchanges information between the finer (micro/meso) and
coarser (macro) simulations.

Within each synchronization interval [t, t + ∆t], the microscopic or mesoscopic DTA produces
high-resolution traffic states for every link l ∈ L in the network. Let nl(t) be the number of vehicles
on link l at time t, and let vi(t) be the instantaneous speed of vehicle i. The model also tracks ∆nl(t),
the count of vehicles that completely traverse link l in [t, t + ∆t]. These raw outputs are condensed into
average speed, density, and flow:

v̄l(t) = 1
nl(t)

nl(t)∑
i=1

vi(t), (1)

k̄l(t) = nl(t)
ℓl

, (2)

q̄l(t) = ∆nl(t)
∆t

, (3)

where ℓl is the length of link l. We denote these aggregated quantities collectively as zl(t) =
(
v̄l(t), k̄l(t), q̄l(t)

)
.

A bridging function Φθ then maps zl(t) to macroscopic parameters for each link:

xmacro
l (t) = Φθ

(
zl(t)

)
, (4)

where xmacro
l (t) could include fundamental diagram coefficients (e.g., free-flow speed, critical density,

jam density) or link performance function parameters. By updating these parameters at each synchro-
nization interval, the macro model remains informed of fine-scale congestion and incident impacts.

Conversely, the macroscopic or mesoscopic model outputs aggregated flows and route assignments
for each link l. Let Fl(t) (vehicles per hour) be the assigned flow and {αr(t)} the route choice splits. We
define a disaggregation function Ψω that interfaces with a well-calibrated SUMO network model [25]
to generate individual vehicle injections. First, we convert the hourly flow into an instantaneous arrival
rate

λl(t) = Fl(t)
3600 , (5)

which determines how often vehicles are spawned in SUMO. Specifically,

xmicro
l (t + ∆t) = Ψω

(
Fl(t), {αr(t)}

)
(6)

encodes the set of vehicle injection events, including spawn times (when the vehicle enters the system)
based on calculated arrival time, alternative routes, and other behavioral attributes. Inside SUMO—which
requires detailed lane configurations, calibrated car-following models, and signal timing plans—each
newly created vehicle follows realistic microscopic rules, such as time-varying lane changes and inter-
section queueing. These behavioral models are calibrated to be consistent with local driving conditions
and geometry to ensure realistic speed and headway distributions. If network-level flows or route splits
{αr(t)} change significantly, SUMO can also trigger route updates during dynamic traffic assignment,
thus preserving consistency with macro-level re-routing decisions. This two-way link between macro
and micro ensures that large-scale demand shifts and localized traffic dynamics remain synchronized
over time.

3.3 Online and Offline Calibration

While domain knowledge can provide an initial approximation of Φθ and Ψω, we employ a two-
phase calibration strategy—off-line deep learning [25] followed by on-line stochastic approximation[26]—to
improve accuracy in reflecting real-world conditions.
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First, we compile a labeled dataset D that associates micro-level aggregates zl =
(
v̄l, k̄l, q̄l

)
with the

corresponding macro-level parameters xmacro
l , and macro-level flows xmacro

l with micro-level injection
patterns xmicro

l . We then train two neural networks, Φθ and Ψω, to minimize mean-squared error losses
of the form

LΦ(θ) = 1
|D|

∑
(zl,xmacro

l
)∈D

∥∥Φθ(zl) − xmacro
l

∥∥2
, (7)

LΨ(ω) = 1
|D|

∑
(xmacro

l
,xmicro

l
)∈D

∥∥Ψω(xmacro
l ) − xmicro

l

∥∥2
. (8)

These models are trained using gradient-based optimization (e.g., Adam), with domain-specific con-
straints (e.g., maximum flow capacities) embedded as penalty terms or hard limits. This offline initial-
ization produces parameter sets (θ0, ω0) that capture normal traffic conditions prior to live deployment.

Once deployed, the bridging functions are further refined to accommodate unanticipated events
or shifts in traffic demand. We employ Simultaneous Perturbation Stochastic Approximation (SPSA)
[25], which approximates the gradient of an online cost function J (θ, ω) by perturbing parameters
in random directions and observing changes in J . The cost function measures discrepancies between
observed field measurements and the hybrid DTA’s predicted traffic states after applying Φθ and Ψω.
For each synchronization interval,

J (θ, ω) =
∑
t∈T

∥∥zobs(t) − ẑ
(
t | Φθ, Ψω

)∥∥2 + λ R(θ, ω), (9)

where zobs(t) are sensor-derived traffic states, ẑ(t) are simulated states, and R(·) is a regularization
term that prevents physically infeasible outcomes. By iteratively adjusting (θ, ω) to minimize J , the
bridging functions remain aligned with real-time conditions, even under incident or off-peak scenarios.

4. Results

Figure 2: Hybrid DTA

The proposed hybrid DTA-based digital twin framework was applied to New York City (NYC).
The data ingestion module captured and aggregated real-time traffic data from multiple sources across
NYC. Traffic information on travel speeds and volumes was obtained from the NPMRDS dataset [27]
at 5-, 15-, and 60-minute intervals, while infrastructure data from NPMRDS and the NYSDOT GIS
provided roadway geometry and attributes such as lane count and width. Incident data were acquired
from real-time feeds (e.g., 511NY [28]) and offline NYCDOT [29] files, supplying event type, location,
and duration. Raw data were processed using AI-based anomaly detection, clustering, and classification;
for instance, a deep-learning object detection model automatically recognized and quantified work zones
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[30]. Finally, event-road and traffic-road matching methods fused these outputs into an integrated data
format.

The hybrid DTA module models traffic dynamics across three scales. At the macroscopic level,
MATSim simulates the entire NYC and provides activity patterns for different population groups, captur-
ing large-scale travel demand and behavior. At the mesoscopic level, DTALite focuses on the Brooklyn
borough, generating multiple scenario analyses to evaluate the impacts of various policies and situa-
tions. At the microscopic level, SUMO simulates detailed vehicle interactions along Flatbush Avenue,
yielding high-fidelity vehicular information. The outputs from these scales are then integrated to ensure
consistency and provide a comprehensive multilevel view of urban traffic dynamics, as shown in Fig.
2. The calibration module continuously adjusts the DTA in real-time by using CV-enabled detectors to
update incidents, network sensors to synchronize the traffic assignment, and AI models to forecast traffic
flows and guide parameters [31].

Finally, the decision support module turns calibrated DTA outputs into actionable insights. The
activity comparisons, scenario analyses, and detailed vehicle movement data produced by the hybrid
DTA model are integrated with additional models like major incidents and extreme events. An exam-
ple of decision-support application is shown in Fig. 3. Based on aggregated multi-scale DTA results
(e.g., travel time and density), users can apply a customized AI model (e.g., deep recurrent neural net-
work) to predict traffic crashes. The predictions generated offer spatial and temporal estimates of crash
occurrences, which can be visualized on the system dashboard. This information supports proactive
policy interventions, such as targeted infrastructure improvements, revised speed limits, and focused
enforcement strategies. In parallel, the digital twin reflects real-time traffic impacts of crashes (e.g.,
reduced speeds and increased densities) to enable immediate operational responses. AI methods (e.g.,
deep Q-learning, PPO) process this potential real-time feedback to continuously adjust adaptive signal
control and dynamic rerouting strategies. This enables traffic managers to swiftly mitigate congestion
and enhance safety during incident situations.

Figure 3: An example of AI-powered decision support in traffic accident management

5. Conclusion and Future Work

This study proposed a hybrid DTA-based digital twin framework for intelligent traffic manage-
ment. The framework integrates multi-scale DTA models—employing MATSim at the macroscopic
level, DTALite at the mesoscopic level, and SUMO at the microscopic level—with real-time sensor data
and AI-enhanced calibration. By using AI-driven fusion techniques, our framework can convert hetero-
geneous sensor inputs into structured traffic-state variables. In addition, our framework ensures seamless
aggregation and disaggregation between different DTA scales, while continuous calibration via online
stochastic approximation aligns DTA outputs with field observations.

Future work will concentrate on improving the robustness of bridging mechanisms by utilizing
advanced AI techniques. We will expand the framework to include additional traffic management sce-
narios and integrate more ancillary models, such as emissions, resilience, and safety. This will support
comprehensive, real-time, multi-objective decision-making for urban transportation systems.
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Localized Queue Spillback Modeling for Dynamic Traffic Assignment with Uncertain
Demand

Jake Robbennolt, Debojjal Bagchi, and Stephen D. Boyles

1 Introduction

The use of dynamic traffic assignment (DTA) models has increased in recent years as they can capture temporal fluctuations in
demand and passenger flows and accurately represent phenomena like shockwaves and queue spillback [3]. Given exogenous
demand and turning proportions, the goal is to model the temporal evolution of traffic conditions, including congestion
patterns, travel times, and queue formation, while adhering to traffic flow principles like flow conservation and capacity
constraints [6]. In particular, queue spillback is a major concern with far-reaching impacts. When queues propagate upstream
and block additional links, the consequences can cascade through entire transportation networks, potentially triggering
widespread gridlock. These issues are also well documented on larger networks where queue spillback has been studied
in relation to roadway geometry, ramp metering, signal timing, and work zones [2, 5, 7]. An extreme case is large-scale
evacuations when extreme demand fluctuations can be much higher than the capacity of the roadway. The substantial
reductions in efficiency due to queue spillback make it critical to incorporate into planning models.

However, methodological research suggests that this can cause convergence concerns and paradoxical behavior, even on
small networks [1, 4]. Recent research suggests that more realistic models may be less robust to errors in input data [1].
In particular, Boyles and Ruiz Juri [1] found that models which include queue spillback can show worse performance when
there is high uncertainty in input demand. This counterintuitive result suggests a fundamental vulnerability in current traffic
modeling approaches, particularly those that attempt to make planning-level predictions far in the future. These findings
indicate that while queue spillback is crucial to model in many situations, models of this phenomenon require a higher level
of accuracy in input data. Unfortunately, there are many situations when it is impossible to precisely predict input data. In
these scenarios, more care should be taken to evaluate where spillback should be incorporated to increase model robustness.

In this paper, we operationalize the key insight from Boyles and Ruiz Juri [1] to create a more nuanced approach to
modeling spillback when errors in input data can be quantified. Our proposed approach seeks to strike a delicate balance:
creating a model that can accommodate spillback at locations where it is highly likely to occur while maintaining robustness
against errors in input data. Boyles and Ruiz Juri [1] present several experiments that suggest that when demand is
sufficiently high relative to errors in input data, models with spillback are still preferred. To capitalize on this insight, we
develop a probabilistic procedure that draws individual demand estimates from known distributions to systematically analyze
spillback potential. We hypothesize that the actual distribution of errors has minimal impacts on our proposed approach as
incorporating more information into the modeling process can improve estimations even if that information is incomplete,
though this will be tested in the full paper. The key innovation lies in our ability to estimate the likelihood of spillback
occurring on individual network links. By allowing spillback only at those locations we demonstrate that our models can be
tailored to accurately predict traffic flows across a wide range of scenarios.

(a) Freeway interchanges: mainline
capacities are 1, ramp capacities are
1/2, r and p are model parameters.

(b) Steady state y1 values for spillback and no-spillback cases as a function of r and p. This
solution is the same for y2 when r is replaced by 1 − r. Asterisks indicate queue spillback
from the ramp.

Figure 1: (a) Network schematic and (b) steady state flow values

2 Motivating Example

Our proposed approach finds an intermediate solution between the model without queue spillback and the model with full
queue spillback. We suggest that in some networks, even if there is uncertainty in the incoming demand, some queues are
likely to spill back. At other locations, queue formation may be less consistent. By modeling spillback at only certain locations
we can achieve a solution that is robust to errors in input data and is more realistic than the no-spillback alternative.
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To demonstrate this idea, we develop a toy example that has two interchanges that are linked (See Figure 1a). Each
intersection consists of a diverge and then a merge. Both ramps have the same splitting proportion from their Eastbound
mainline p which we will allow to vary. The ramps have a capacity of 1/2 and all mainlines have a capacity of 1. Each
eastbound mainline has a fixed inflow of 1 unit. The southbound roads have a total inflow of 1 unit, which is split with
r headed towards intersection 1 and 1 − r headed towards intersection 2. We assume the diverge of the two southbound
mainlines will never become congested (i.e. it is very long relative to the length of the ramps). This means that the only
locations where spillback will cause predictions to differ are the ramps (at either intersection 1 or 2). Then, we will try to
predict the outflows y1 and y2 as a function of p and r (the outflows on the southbound links will be the same regardless of
queue spillback). Figure 1b shows the steady state outflow solution for intersection 1. Intersection 2 has the same solution
except incoming flows are based on 1− r from the north.

Figure 2: Scenarios where each model (S – spillback everywhere, N – no
spillback, 1 – spillback on ramp 1, 2 – spillback on ramp 2) is not statis-
tically significantly worse than any other model. Bold means statistically
significantly better than all other models.

To determine the best model, we first take 20
evenly spaced values of p̂ and r̂ inside the unit square.
For each of the resulting 400 scenarios, we generate
n = 2, 500 samples of p and r from independent normal
distributions using p̂ and r̂ as the means and a pro-
vided standard deviation. We assume that the model
with spillback predicts the vector of flows m perfectly
at the input values with no error. Then, for each sam-
ple, we can calculate the root mean squared error ϵN

between the vector of actual flows and predicted flows,
where N represents the network state (spillback, no
spillback, spillback at intersection 1, or spillback at
intersection 2). Using the 2500 samples for each sce-
nario, we calculate the expected value δ and standard
deviation s of the difference in errors ϵα − ϵβ between
each pair of models α and β. These values are used to
compute the t-score t = δ

s/
√
n
for determining statis-

tical significance.
Using a significance level of 5%, Figure 2 shows all

locations where each model is not statistically signif-
icantly worse than any other model and all locations
where one model is significantly better than all other
models. When error is low, many models perform sim-
ilarly across most of the scenarios, with the spillback
model generally being the most versatile. However, as
errors increase, there are many cases when it is bet-
ter to model spillback only at a single intersection or
not at all. In fact, the root mean squared error in
flows is a conservative metric because when demand
is over-predicted, spillback may reduce the outflow.
Other metrics such as total system travel time will in-
crease both as demand is over-predicted and as more
queues spill back, exacerbating the results shown in 2
and suggesting that the models which apply spillback
selectively have even better performance. This effect
is shown on the Austin, Texas network in Section 4.

3 Localized Queue Spillback Algorithm

The example presented in the previous section suggests the need for a more flexible approach than allowing or disallowing
spillback on the entire network. Queue spillback is a critical traffic phenomenon that must be modeled at locations where it
is likely to occur. However, the discontinuities introduced by spillback can cause large prediction errors in certain locations
under certain demand patterns. With these issues in mind, we present an algorithm to detect locations where spillback is
likely. We assume that the modeler has some information about the distribution of possible demand matrices, rather than a
single prediction. These could be generated through Monte Carlo simulation from other steps in the four-step planning model
[8]. Using several demand samples, we can run dynamic network loading (DNL) and determine the likelihood of spillback
occurring. Then, we can allow spillback only at those locations for the final DTA model implementation.

Algorithm 1 outlines the localized queue spillback (LQS) algorithm. In this algorithm, we start by running DTA at the

2



Algorithm 1 Selective Queue Model Classification (LQS) for Dynamic Traffic Assignment

Require: Network G(N ,A), target demand d̂, demand scenarios D, number of levels n, spillback threshold δ, convergence level ϵ
Ensure: Sets of spillback links S and probabilities P , path set Π, set of spillback counts C
1: Initialize S ← ∅, P [l]← 0 ∀l ∈ A
2: Π← RunDTA(network, d̂, S)
3: for level← 1 to n do
4: Initialize C[l]← 0 ∀l ∈ A
5: for all d ∈ D do
6: densities ← RunDNL(network, Π, d, S)
7: for all l ∈ A do
8: if DetectSpillback(l, densities) then
9: C[l]← C[l] + 1

10: α = 1/(level+1)
11: for all l ∈ A do
12: Pnew[l] = (1− α)P [l] + α(C[l]/n)
13: S = {l for l ∈ A if Pnew[l] ≥ δ}
14: if |P |−|Pnew|< ϵ then
15: break
16: P ← Pnew

17: results ← RunDTA(network, d̂, S)
18: return results

target demand prediction under the assumption of no queue spillback. This will create a path set and turning proportions
that will be used for all DNL runs, where demand is adjusted proportionally across all paths. Then, for each demand scenario,
we run DNL and identify links where queue spillback should have occurred by examining the density of vehicles on that link.
If this density exceeds the actual jam density, then queues would have spilled back under realistic jam density conditions. By
aggregating results across all scenarios, we compute the probability of queues spilling back for each link. We then update the
links to use the spillback model if the probability of spillback is greater than some threshold δ. We repeat the entire process
for several levels to refine the probability values. At each level, the same demand scenarios are rerun and probabilities are
updated using the successive average of the probabilities from the previous iteration. The algorithm terminates either if the
probabilities don’t change by more than ϵ between levels or if a certain number of levels have been processed. Finally, using
the final set of spillback links we rerun DTA at the target demand prediction to get the final solution.

The algorithm allows many scenarios to be tested with only two full DTA runs, and additional DNL runs for other demand
predictions. For many practical applications it is common to use the output of a single demand prediction, so this approach
uses that same structure (ending with a model that is run for the target demand). However, by incorporating additional
demand scenarios to modify where queue spillback is modeled, we make the results more robust to errors in input data. In
addition, by using DNL rather than additional full DTA runs at each scenario, the algorithm can still be run quickly to
evaluate many scenarios which may be computationally infeasible otherwise. Initial tests presented below replace the DNL
with full DTA runs for initial testing, though this will be relaxed in the future.

4 Large-Scale Implementation

We now show the performance of the proposed model on the downtown Austin, TX network, a larger network with 1251
links, 546 nodes, and a total demand of 228,361 vehicles (depicted in Figure 3a). We use the VISTA software to solve the
DTA model [9]. VISTA uses the cell transmission model for link models, modeling the available space at the end of the link
based on the propagation of shockwaves. To model the no spillback scenario, we continue to use the cell transmission model,
but set a very high jam density to allow arbitrarily long queues. To study the impact of queue spillback and test the LQS
algorithm, we vary the incoming demand uniformly between -30% and +30%. We calculate the total system travel time
(TSTT) using the model with spillback, without spillback, and using the localized spillback algorithm.

As a baseline, we solve the network to four iterations of the method of successive averages DTA. We use 7 demand
samples (every 10% between -30% and 30%) and 6 levels in the LQS algorithm to select which links should have spillback.
This requires a total of 42 DTA runs. Then, Figure 3b shows the resulting TSTTs for each model. The model closest to the
horizontal line (representing the TSTT when demand is predicted perfectly) is preferred. As expected, the model
with spillback performs poorly when demand is overestimated substantially. However, when demand is underestimated, the
spillback model makes the best prediction. Of particular value is the slope of the localized spillback line as demand increases.
While the slope of the spillback model line increases rapidly, the localized spillback line matches the no-spillback line when
over-predictions are made. This is valuable in practice, particularly when demand is highly uncertain. In addition, when the
demand is predicted perfectly, the localized spillback model outperforms the no-spillback model.
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(a) Downtown Austin, TX network with spillback
links in red and no-spillback links in black based on
the localized queue spillback algorithm.

(b) TSTT for the downtown Austin, TX network as demand varies using the
spillback, no spillback, and localized spillback models. Horizontal/vertical lines
indicate the true TSTT value. The model closest to the true value (hor-
izontal line) is preferred.

Figure 3: (a) Austin, TX Network schematic and (b) algorithm results.

5 Conclusion

Building on research demonstrating the challenges of modeling queue spillback in dynamic traffic assignment, this paper has
presented a novel framework for selectively implementing spillback at locations where it is most likely to occur. Through
both theoretical analysis and practical implementation, we show that, while spillback is important to model accurately,
the phenomenon creates fundamental vulnerabilities in traffic modeling, particularly when there is uncertainty in demand
predictions. The key innovation of our approach lies in recognizing that some locations are more prone to spillback than
others, regardless of demand uncertainty. Our localized queue spillback algorithm capitalizes on this insight by systematically
analyzing multiple demand scenarios to identify links where spillback is highly probable. The algorithm’s effectiveness was
demonstrated on the Austin, Texas network. When tested across a range of demand scenarios varying from -30% to +30%,
the localized spillback model showed superior performance characteristics compared to both full spillback and no-spillback
alternatives. Particularly noteworthy was the model’s ability to match the spillback model’s accuracy during demand under-
prediction while maintaining the robustness of the no-spillback model during over-prediction scenarios. The input spillback
probability threshold δ allows the model to be adapted to the modeler’s risk tolerance.

The framework presented could be extended to incorporate additional stochastic elements such as stochastic fundamental
diagrams to capture inherent traffic flow variability, probabilistic route choice models beyond Wardropian equilibrium, and
time-varying reliability metrics. Such extensions would further enhance the model’s ability to represent uncertainty in both
supply and demand characteristics while maintaining computational tractability. In addition, future research should examine
computational efficiency as the proposed approach requires many DNL runs. Other adaptations of link models or integrations
of similar procedures directly into the DTA iterations may reduce the computational costs of this procedure.
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Extended Abstract.  

The on-ramp area is a high-risk conflict zone where traffic accidents frequently occur. 
Connected and automated vehicles (CAVs) offer the potential to enhance merging 
safety through effective cooperative control strategies.  
One possible solution for optimising the merging process involves managing the on-
ramp merging lane by shielding it from the main traffic flow. To achieve this, in 
addition to conventional control strategies such as variable speed limits and ramp 
metering, geometric lane drops (e.g., work-zone or design-based) or virtual lane drops 
on the main road could be considered. These measures can help reduce conflicts in the 
on-ramp merging zone when a hard shoulder is unavailable and Hard Shoulder Running 
is not a viable option. However, implementing such solutions introduces a bottleneck 
on the main road, necessitating effective merging strategies to enhance safety upstream 
[1]. 
The literature proposes various lane merging strategies, including early/late merge 
techniques, lane-changing advisory systems, and optimization strategies for mixed and 
fully automated CAV environments [2-5]. 
Based on this premise, this study explores various network management approaches to 
identify key factors that influence efficient traffic control in a CAV environment. We 
conduct a real-scale case simulation using a microscopic traffic model to evaluate the 
impact of geometric and virtual lane drops upstream of an on-ramp zone. Additionally, 
both static and dynamic merging systems are analyzed, considering the presence of 
CAVs.  
The case study focuses on the Tangenziale di Napoli (TaNa), a major arterial road in 
Naples, Italy. The methodology involves implementing a lane drop of the outermost 
lane on the main road (TaNa) to mitigate conflicts in the merging zone near the entrance 
ramp (Figure 1).  
A What-If analysis is conducted using the PTV Vissim microscopic traffic simulation 
model, considering the following scenario parameters: 

• fixed downstream closure distance (lv); 
• variable upstream closure distances (lm); 
• variable warning distances (la); 
• variable lane drop durations (tc). 

Preliminary results indicate negligible variations in overall network performance, with 
the most noticeable effects on the ramp. At the same time, a greater impact is observed 
on safety indicators, particularly in reducing conflicts. Future research will focus on 



 

formulating a multi-objective optimization problem to determine the optimal strategy, 
validating compliance with regulatory frameworks and real-world lane drop operations, 
and integrating control strategies such as variable speed limits while expanding the 
spatial scope of the analysis. 
 

 
Figure 1. A scheme of the lane drop applied to the case study 

 

Keywords: Lane Drop, CAV, Traffic Management. 
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Route choice behaviour for each o-d pair i can be described by applying any discrete 
choice modelling theory so that route choice proportions pi  depend on route systematic 
disutilities (costs) w:  

pi = pi(wi; i)  i (2.12) 

where i is the choice  function parameter vector, whose meaning depends on the choice 
model specification. If a utility scale parameter is present, it is considered included in the 
utility parameter ρi (or vice versa).  

 
DEFINITION 1. A choice function is defined regular, if: 
 

 it is continuous and monotone increasing with respect to systematic utility,  
 it is continuously differentiable with symmetric positive semi-definite (with respect to 

real vectors) Jacobian, formally pi(vi) ≽ , 
 resulting choice proportions depend on differences between systematic utility values 

only [HYP ]. 
 
Most often Random Utility Theory (RUT) is applied, assuming that (i) each user, 

travelling between o-d pair i, associates to each available route a perceived utility, (ii) the 
perceived utility is modelled by a continuous random variable, with mean given by the 
systematic utility, due to several sources of uncertainty regarding the users or the 
modeller, and (iii) chooses the maximum perceived utility route; thus the choice 
probability of an alternative is given by the probability that its perceived utility is equal 
to maximum among all alternatives;  hence the route choice proportions are assumed 
defined by the route choice probabilities.  

When the perceived utility co-variance matrix is non singular, a probabilistic route 
choice function is obtained; it is also called strictly positive if each alternative gets a 
strictly positive probability, whichever are the systematic utility values; examples of 
strictly positive probabilistic route choice functions are the Logit, Weibit, Probit, Gammit 
choice functions, usually adopted for route choice modelling. [Strictly positive choice 
functions may sound somehow unrealistic, as any model they have to be considered 
suitable mathematical approximations.] If the parameters of the perceived utility pdf do 
not depend on systematic utility values, the resulting choice function is called invariant, if 
continuous and continuously differentiable, it is regular.  

Anyhow equation (2.12) is generally enough to include choice models derived from 
other discrete choice theories, such as Fuzzy Utility Theory, Bounded Rationality, 
Prospect Theory,  ... (some of them are described in Appendix 2). In any case,  a choice 
function combined with an utility function gives a choice model. 
_____________________________________________________________________________________________________
                

An example of  choice function (2.12) derived from RUT is the well known Logit choice 
function, often used as benchmark. For each o-d pair i, connected by routes in the route 
choice set Ri, the choice proportion / probability of using route r is given by:  

pr = exp(vr / i) / ∑kRi  exp(vk / i)            rRi 

where i = (60.5/) i  0.78 i > 0 is a dispersion parameter proportional to the standard 
deviation i common to the perceive utilities of all routes connecting o-d pair i;  the above 
Logit function is invariant  if the route choice set Ri and the dispersion parameter  i  do 



not depend on systematic utility values. Combing the above choice function with the 
utility function:  vr = i wr  , leads to: 

 pr = exp(wr / i) / ∑kRi  exp(wk / i)    rRi 

The utility scale parameter i  is included in the dispersion parameter i . 
                
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Risk management from disastrous events, both natural and man-made, has become an increasingly central 

issue in recent years. Disasters such as Hurricane Katrina and the tsunami that hit Fukushima have highlighted 

the need for evacuation planning, which is closely linked to risk exposure management. While several actions 

can be taken to reduce vulnerability and the likelihood of damaging events, exposure can be reduced with an 

evacuation plan. 

The increase in global conflicts and the growth in disastrous events caused by climate change over the last 

fifty years [1] make the need to develop risk reduction strategies even more urgent. For this reason, the Sendai 

Framework for Disaster Risk Reduction 2015-2030, together with Sustainable Development Goals 1, 11 and 

13 of the 2030 Agenda, underlines the importance of developing evacuation plans with common standardised 

procedures in order to strengthen the resilience of communities around the world [2–5]. 

 

An evacuation plan contains well-defined strategies that aim to ensure the safety of people in emergency 

situations. Within the plan, it is determined how to move the population from a risk area, such as a city or a 

vulnerable region. To make this happen as quickly and efficiently as possible, transport systems are essential. 

They are in fact the means by which people can move from one place to another where there is the safety. 

Transport Risk Analysis (TRA) is an evolution of Quantitative Risk Assessment (QRA), originally applied to 

the chemical industry. The risk model is based on three main components [6]: 

• Occurrence: Probability of an event happening. 

• Vulnerability: level of damage that the event may cause. 

• Exposure: Number of people or property that could be affected by the disaster. 

The exposure component is reduced by the evacuation plan. Transport planning, therefore, becomes a key 

factor in reducing risk. 

In order to reduce the risk of an emergency situation, models must be developed to simulate the evacuation 

procedures contained in the plan. These models can be developed in  the Transport System Models (TSMs) 

field [7], and include the study of travel demand, which is the choices made by users according to the network 

and the services available, of transport supply, which analyses the costs associated with using the infrastructure, 

and of the assignment given by the interaction between supply and demand, with which it is possible to estimate 

the traffic flows resulting from user choices and network performance. Travel demand is modelled through 

behavioural or descriptive approaches. Behavioural models explicitly consider users' decisions on the basis of 

utility criteria, considering variables such as travel time, travel cost and individual preferences, Random Utility 

Model (RUM), Quantum Utility Model (QUM) and Fuzzy Utility Model (FUM) belong to this category. 

Descriptive models are based on aggregate relationships between demand and network characteristics, without 

making explicit the decision-making process of individual users [8–12]. Transport supply is represented 

through topological models, which describe the infrastructure network through nodes and links, associating 

cost functions to each arc that depend on traffic flows. The interaction between supply and demand is modelled 

through the traffic assignment process, which determines the distribution of travel flows on the network based 

on user choices. Assignment models can be classified into static and dynamic. 

The development of TSMs requires a methodological approach that integrates survey tools to analyse user 

behaviour in an emergency context. This is important because it is not possible to study user behaviour during 



a real emergency event, but it is necessary to simulate a hypothetical and at the same time realistic emergency 

scenario in order to make ex-ante assessments. There are two main types of surveys used for analysing travel 

decisions: 

• Revealed Preference (RP), collects data based on users' actual choices under normal conditions, analysing 

their daily mobility behaviour; 

• Stated Preference (SP), uses hypothetical scenarios allowing the estimation of user behaviour in 

hypothetical situations that cannot be directly observed. 

The integration of RP and SP data permits the development of more accurate predictive models that can 

simulate the dynamic behaviour of the population during an evacuation. 

The information gathered from the survey is the basis on which the TSMs, and in particular the path choice 

models that allow the risk exposure component to be studied, are built. Traditionally, static models are used, 

however, these models are forced for representing scenarios in which the risk event and the availability of 

transport infrastructure change rapidly over time. On the other hand, dynamic models allow the evolution of 

the system over time and the updating of user choice behaviour to be taken into account [13–16]. 

Under emergency conditions, the model must consider temporal variations endogenous (traffic) or 

exogenous (event occurred). Under these conditions, the models that predict the propagation of flows on the 

network are within-day models, which analyse traffic evolution over a day, and day-to-day models, which 

consider traffic evolution over several days [17, 18]. 

The risk condition is different from the usual one. There are multiple risk conditions in which the time 

between occurrence of the event and effect on users is sufficiently large, and such as to allow evacuation. In 

this condition the user may have information that allows him to update his choice in successive time periods. 

It is then possible to divide the day into time periods and then use a dynamic process structure of the type day-

to-day to develop a period-to-period analysis. 

In the dynamic approach, a key aspect to be considered is the learning process of users who may modify 

their path choices based on past experiences or real-time information received on the evolution of the event 

and the network. In this case, the approach used in the literature is sequential analysis that uses users' past 

decisions to determine future ones.  

Referring to an evacuation plan, in order to analyse the behaviour of transport users under risk conditions, 

can be developed dynamic models that can estimate the updating of choices with a sequential approaches [19]. 

This work presents an application example of the development of transition matrices that consider the 

evolution of users' route choices under emergency conditions, relative to a generic transport network. 

In order to understand user behaviour, a survey was conducted on a prototype sample collecting information 

on both Revealed Preferences (RP) and Stated Preferences (SP). The questionnaire was divided into two parts. 

The first part (RP) collects socio-economic information of the users and analyses their travel habits within the 

urban area. The second part (SP) introduces the hypothetical but realistic emergency scenario, which was a 

flood with the risk of two torrents overflowing, and describes the vulnerability conditions of the transport 

system. Each participant is provided with three key information: the location of the critical event, the position 

where s/he would be at the time of the emergency and the safe zone to be reached.  

This study showed a practical application based on a transport network representative of many urban areas, 

analysing a hypothetical risk scenario. The results obtained demonstrate the potential of the approach adopted, 

highlighting how, in the development, a behavioural model can be applied through calibration and validation 

processes, exploiting the data of stated preferences of users. The proposed approach is particularly interesting 

for policy makers and experts engaged in risk reduction planning. Finally, the proposed approach can be 

developed for ordinary conditions and could provide useful guidance for the development of models relating 

to urban areas with ICT presence. 
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1     INTRODUCTION 
Urban freight traffic makes up around 10-15% of the total distance traveled and is responsible for about 

6% of greenhouse gas emissions related to transportation (Civitas, 2020). Currently, using internal 

combustion engine vehicles (ICEVs) for distribution contradicts the carbon emission reduction goal. In 

comparison, electric vehicles (EVs) can lower motor noise and emissions, and making them 

fundamental to the green development of urban logistics (Pelletier et al., 2016).  

There are different types of financial support for promoting the adoption and operations of EVs, 

such as EV purchase subsidies, fleet electrification subsidy (FS), mileage subsidy (MS), tax rebates, 

charging facility subsidies, and charging discounts, as well as non-financial incentives, including traffic 

incentives and convenient parking measures (Morganti and Browne, 2018). The EV purchase subsidy 

(PS) is a widely utilized policy tool to make EVs more affordable compared to ICEVs and promote EV 

adoption. The fleet electrification subsidy (FS) aligns subsidy eligibility with the fleet electrification 

ratio and determines the subsidy amount based on the number of EVs to support LSPs that are making 

significant strides towards sustainable transportation practices. To incentivize the actual use of EVs, 

the mileage subsidy (MS) policy has been applied to each EV that meets a threshold for single-vehicle 

mileage, ensuring that the financial support goes toward vehicles that actively reduce emissions.  

While the PS policy is widely studied for its role in adoption, the impact of the FS and MS policies 

on the EV utilization, total cost of the fleet, carbon emissions, and social welfare are less understood. 

Unlike the PS policy, the FS and MS policies impose additional requirements for fleet electrification 

ratios and EV operating mileage, which could significantly influence fleet routing decisions. As 

suggested by Yang and Hyland (2024), potential regulations concerning the proportion of EVs in 

delivery fleets and the miles driven by EVs are necessarily explored. To address this gap, it is expected 

to develop a fleet composition and vehicle routing model to investigate the impact of the PS, FS, and 

MS policies. 

From the government’s perspective, EV subsidies should help LSPs reduce costs and carbon 

emissions. From a business perspective, reducing costs and carbon emissions is attractive to the LSPs’ 

customers and investors. van Gogh et al. (2021) find that a rapidly increasing number of companies are 

taking action to reduce supply chain emissions, prioritizing low-carbon supply chains, and are willing 

to pay a 5-10% premium for sustainable logistics services. Considering that both governments and 

firms aim to reduce costs and carbon emissions, this paper presents a bi-objective optimization 

framework to minimize costs and emissions in a mixed fleet of EVs and ICEVs, focusing on their 

composition and routing decisions. It also explores the impact of PS, FS, and MS policies on the fleet, 

aiming to answer the following three research questions: 

1. How should an LSP reduce the total cost and carbon emissions of the fleet by optimizing EV 

and ICEV deployment and route selection under the FS and MS?  

2. How to select the PS, FS, and MS policies to maximize social welfare?   

3. What are the different impacts of the FS and MS policies, compared to the PS policy, on EV 

usage, total cost, and carbon emissions for an LSP?  

                                                           
* Corresponding author. 

E-mail addresses: mengxu@bjtu.edu.cn 



  2 

 

DTA2025  Original abstract submittal 

By studying these issues, this paper aims to understand how government agencies rank EV 

subsidy measures in terms of fleet electrification, EV mileage, carbon emissions, and social welfare. It 

also offers LSPs references for optimizing fleet composition and vehicle routing, and provides guidance 

on how urban delivery fleets can develop greenly in the context of carbon peak and carbon neutrality. 
 

2     METHOLOGY 
2.1  Description  
The government aims to evaluate the impact of EV subsidies (PS, FS, and MS) on a mixed urban fleet 

of the LSP. Under each subsidy policy, the LSP makes fleet composition and route decisions with two 

objectives: reducing costs and lowering carbon emissions. Carbon emission reduction is regarded as a 

primary optimization goal, as many leading logistics companies focus on environmental, social, and 

governance initiatives, incorporating carbon reduction into their operations to attract customers and 

investors. Additionally, it is imperative for the government to evaluate the outcomes of subsidizing EVs 

while mandating LSPs to prioritize carbon emission reduction in their operations.  

The LSP dispatches ICEVs and EVs from the distribution center to deliver to multiple superstores 

and return every day. Each customer’s time window is known. The use of ICEVs is constrained by 

vehicle access restrictions, and the use of EVs requires consideration of the impact of their driving 

range and charging strategy. The EVs depart from the distribution center on a full charge, with the 

option to partially charge them en route. These assumptions are based on the case of Sinotrans, a 

leading LSP in China, responsible for daily deliveries to a number of supermarkets in Beijing. It is 

assumed that ICEVs and EVs can serve multiple customers, with each customer point being served 

only once. Furthermore, the maximum carrying capacity of vehicles with the same type of energy is 

assumed to be the same. We use the fleet composition and vehicle routing model results to compare the 

impacts of PS, FS, and MS, respectively. Figure 1 presents an overview of the optimization modeling. 

 

Fig. 1 Overview of optimization modeling 

2.2  A bi-objective MFVRP model under the PS policy 

We now define notations for the bi-objective MFVRP. This problem is defined on a complete directed 

graph ( , )G A  , where Λ {0}I R    is the set of nodes, I  is the set of customers, R  is the 

set of charging facilities, and {0}  denotes the distribution center. The set of arcs is characterized by 

 ( , ), , andA i j i j N i j   . Let K  denote the set of vehicles and the subscript k  denote the 

vehicle number. The symbol 
*I  represents the set of nodes with access restrictions for ICEVs. The 

fixed cost and variable cost of EV (ICEV) are denoted by 
EVf (

ICEVf ) and 
EVc (

ICEVc ), respectively. 

The EV’s and ICEV’s maximum carrying capacities are 
EVQ and 

ICEVQ , respectively. Given the 

widespread adoption of the PS policy in logistics operations. Note that 0PS

ky  ( 1PS

ky  ) represents 

the vehicle k  is an EV (ICEV). The total number of EVs and ICEVs under the PS can be determined 

by (1 )PS PS

EV k

k K

N y


   and 
PS PS

ICEV k

k K

N y


  , respectively. The total fixed cost of vehicles under the 

PS policy ( )PS

F kC y  is  

The government

Comparison of the PS, FS,and MS policies

The EV subsidy policy, w=PS, FS, MS

 Process OutputsInputs

 Customer demand 
 Spatial distribution of the 
distribution center, charging 
facilities, restricted areas
 Parameters for EVs and 
ICEVs

 Objectives: minimizing the total cost of the fleet and 

reducing the carbon emissions under the w policy

 Constraints: vehicle assignment and flow 

conservation, vehicle capacity, EV power,  customer 

time windows, and access restrictions for ICEVs

  Total cost
  Carbon emissions
  Fleet composition
  Routing decisions
  Partial charging decisions

Impacts of the w policy  on a mixed urban delivery fleet 
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   [ (1 ) ]( ) PS PS

EV k I

P

CEV kk

k K

S

FC f y fy y


                             （1） 

The variable cost of vehicles with the PS ( , )P

V

S PS

ijk kx yC  is a nonlinear function, depending on the 

vehicle type decision 
PS

ky  and the routing decision 
PS

ijkx .   

   
Λ Λ

, ( )( ) 1PS PS PSPS PS

V EV k Iijk k CEV k i ijkj

k K i j

C x c y c y dy x
  

                         （2） 

Note  ,i ie l  denote the time window for customer i  and 
PS

ikt  represent the vehicle k ’s arriving 

time at node i  under the PS policy. We assume that the LSP is required to pay compensation 

( )PS

iE ikp e t  if vehicle k  arrives early and compensation ( )PS

ikL ip t l  if vehicle k  arrives late, 

which represents a soft time window scenario. The penalty cost for violating the customer’s time 

window under the PS policy is  

        

   

 

( ) max ( ),0 max ( ),0

max ( ),0, ( )

PS PS PS

P rk i ik ik i

k K i I

PS PS

i ik ik i

k K i I

E L

E L

C z p e t p t l

p e t p t l

 

 

    
 

  




      （3） 

As a per-vehicle subsidy 
PSs  is granted to the LSP for EV purchases, the LSP’s total cost of the 

mixed fleet under the PS policy becomes ( , , )PS PS

ijk k

PS

rkx yC z : 

       (( , , ) ( ) ( ), )PS PS PS PS

krk

PS PS PS PS PS

ijk k F rk ijkV P k EVC z xC C z sx y C y y N             （4） 

This paper considers two objectives for the LSP: minimizing the total cost of the fleet and 

reducing the carbon emissions produced by ICEVs. Since EVs have zero tailpipe emissions, this paper 

mainly focuses on the ICEVs’ carbon emissions during their operations. According to road 

transportation practices and existing studies such as Toro et al. (2017), carbon emissions of an ICEV 

can be estimated based on fuel consumption and carbon emissions of the fuel used. Then the carbon 

emissions from ICEV k  on arc ( , )i j  (i.e., ( , )PS PS

ijk kE x y ) can be estimated using its fuel consumption 

( , )PS PS

ijk kF x yC  and the fuel emission factor FE  as follows: 

   ( , ) ( , )·PS PS PS PS

ijk k ijk kE FC x y Ex y F
                                                 （5）

 

where FE  represents the efficiency of converting fuel into carbon emissions and is defined as the 

amount of CO2 emitted per liter of fuel. This efficiency is influenced by the vehicle type, the fuel type, 

and other related variables. 

Further, we will present the bi-objective MFVRP model under the FS and MS policies. 

2.3  Social welfare 
A key issue for the government is understanding how subsidy policies affect social welfare. The 

social welfare under the w  policy ( w  PS, FS, MS), denoted by 
wSW , includes the following terms: 

(1) the LSP’s profit 1( , , )w w w

ijk k rkx y z ; (2) the customer’s profit 
2

ˆ( )w

c lsp j

j I

V V q


   ; (3) the profits 

of the EV and ICEV suppliers; (4) the profits of the electricity and fuel suppliers; (6) the total subsidies 
wS . The total subsidies in social welfare can be eliminated as they are transferred from the government 

to the LSP. Then the social welfare under the w  policy can be defined by 
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1 2

3 5

4 6

2

3 5

( , , ) ( , , ) ( ) ( , ) ( , )

ˆ ( ) ( , ) ( ) ( , ) ( , )ˆ ˆ ( )

w w w w w w w w w w w w

ijk k ijk k rk g k g ijk k ijk k

g g

w w w w w w w w w

lsp j k ijk k g k gV ijk k ijk

j

w

rk

r k

I g

P k

g

w

F

SW x y x y z y x y x y S

V q y x y y x y

z

C C xz yC

   

  

 

  

      

        

 

  

. 

3     NUMERICAL RESULTS 
This paper considers that an LSP employs EVs and ICEVs to deliver goods from a distribution center 

to 30 customers daily, with a maximum demand of no more than 0.5 t per customer. Utilizing the 

improved NSGA-II, we observed an average time of 71 seconds for each run. After executing the 

model at least five times, we obtain the following average results: 72 Pareto frontier solutions, an 

average of 3.91 EVs and 2.26 ICEVs, an average total cost of 3612.33 yuan per day, an average carbon 

emission of 9631.41 g per day, and an average EV charging power of 204.96 kWh per day. The vehicle 

routing optimization results are randomly selected in the Pareto frontier solution as shown in Fig. 2. 

 

Fig. 2. Simulation results. 

Further investigations on the sensitivity analysis of EV subsidies, and the comparison of 

EV subsidy policies will be implemented.  

 

4     DISCUSSION 
To promote EV adoption in city logistics, the FS and MS policies have implemented by several Chinese 

cities, providing eligible EVs with financial support. This study is expected to propose a bi-objective 

optimization model for MFVRP under three subsidy policies: PS, FS, and MS. The objectives are to 

minimize the total cost and carbon emissions of the LSP’s fleet, while considering the impacts of the 

EV on-the-go charging decision and the ICEV’s carbon emissions. As an early attempt, this paper 

introduces the FS and MS policies into the bi-objective MFVRP. Effects of PS, FS, and MS will be 

compared regarding the total cost of the fleet, the proportion of EVs, fleet carbon emissions, and social 

welfare.  

The following results in this study are expected: 

 The impact of the three policies, i.e., PS, FS, or MS, will be investigated upon the potential to 

maximize social welfare, depending on the number of EVs in the fleet and the environmental 

impact of EV production. When the environmental impact of producing an EV is sufficiently 

small (sufficiently large), the policy (PS, FS, or MS) that results in the maximum (minimum) 

number of EVs in the fleet is expected to achieve the greatest social welfare. 

 The increasing of the PS, FS, and MS can reduce the total cost of the fleet but has varying effects 

on fleet carbon emissions, the proportion of EVs, and the average mileage of EVs. Specifically, 
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increasing both the PS and FS can reduce fleet carbon emissions and increase the proportion of 

EVs, but it does not necessarily lead to an increase in the average EV mileage.  

 When the total fleet subsidy changes, the total cost of the fleet may be lowest under the PS, FS, or 

MS policy. Both the PS and FS policy can result in a higher proportion of EVs compared to the MS, 

leading to potentially lower fleet carbon emissions.  
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Evaluation of the resilience of a transport network is the basis for understanding the functionality of 

the network in the presence of disturbance. The objective of this work is to provide a measure of the 

resilience of a road network considering the case where, due to a disturbance situation, the network 

capabilities are reduced. The evaluation of the resilience of a transport network has been covered by 

many authors from different points of view, ranging from methods to quantify the resilience ([1], [2]) 

to resilience assessment ([3], [4]) to the network optimization ([5], [6]). The contribution of this work 

to the literature is in the dynamic approach developed to measure the resilience of a road network 

considering a definition of resilience based on mechanics (most of the works in the literature are 

based on a concept of resilience derived from ecological systems). 

The concept of resilience is defined variously in the literature, in this work the definition is based on 

the concept of mechanical resilience, understood as the ability of a material to absorb elastic energy 

when subjected to stress and to release it when such stresses cease. The concept of resilience is 

measured both in terms of immediate resistance capacity (robustness) and in the speed of recovery 

(recovery time), just as in resilient materials it is evaluated as in mechanics, a resilient transport 

network is able to absorb a shock (disturbing event) and quickly restore its operation, minimizing 

efficiency losses. From the previous premises, in this work, the resilience of a transport network is 

defined as the capacity of the network to absorb disturbances (adverse events such as accidents, 

failures, extreme weather events, cyberattacks) while maintaining or quickly restoring its level of 

service. It is measured by indicators that evaluate the efficiency of the system before, during and after 

the disturbance event. To better clarify this definition, Table 1 reports a parallel between mechanical 

resilience and the resilience of a transport network. 

 

Table 1 – Comparison between the concept of resilience from mechanic systems to road transport network  

Mechanics Transport Networks Meaning 

Energy absorbed  Loss of network capacity 
Impact of the disruptive event (e.g. reduction in 

traffic flow, congestion) 

Applied stress  
Critical event on the 

network 

Accident, roadworks, landslides, floods, snowfalls, 

cyber-attacks on traffic management systems 

Elastic capacity of the 

material  

Traffic adaptation 

capacity 

Ability of the network to redistribute vehicles on 

alternative routes (system elasticity) 

Energy released  Traffic recovery 
The speed with which traffic returns to pre-

disturbance levels 

Resilience test 

(Charpy/Izod) 

Measurement of 

performance indicators 

Analysis of the network's ability to absorb shocks 

and recover 

 



A resilient road network is able to handle disruptions, reducing their impact on traffic, and quickly 

restoring normal operation. Just as a resilient material absorbs energy without breaking, a resilient 

road network absorbs critical events, minimizing congestion and recovery times. 

The indicators used to measure resilience in the transport network are as follows: 

• Recovery time (Tr): it is the time required for traffic parameters (average speed, density, flow) to 

return to normal values after a disturbance;  

• Capacity reduction index (Cr): represents the reduction (in percentage) of network capacity due 

to disruption;  

• Robustness (Rb): measures the network’s ability to maintain connections even under stress;  

• Vulnerability index (V): it indicates how many interruptions at critical points can affect the entire 

network;  

• Road network flexibility (F): it is the ability to distribute traffic over alternative routes without 

causing system collapse. 

In the context of a road network, residual resistance represents the capacity of the network to continue 

to function, albeit with reduced performance, after a disturbance (accidents, road closures, natural 

events). Starting from the previous indicators, some resistance indicators can be derived: 

• Residual transport capacity (Cres): it represents how much traffic capacity remains available after 

a disruption; 

• Residual efficiency (Eres): is the percentage of network performance compared to the normal 

condition; 

• Residual connectivity index (Icon): it indicates how many alternative routes remain available after 

a disruption. 

Figure 1 reports schematically the adopted procedure. Starting from demand and supply, the system 

is simulated by means of a dynamic traffic assignment (DTA), and the previous resilience indicators 

are calculated for each time interval. The test is performed on the network load conditions: if the 

network is empty, the procedure ends, otherwise it goes to the next time interval. More in detail, the 

DTA model considered in this work is mesoscopic ([7], [8]), the users (vehicles) are assembled in 

packets moving on the road network, which means that the demand is discretized for each origin-

destination pair. A graph G(N,A) represents the transport network, N is the set of nodes, and A is the 

set of arcs. Each arc a belonging to A is composed of two parts: a running segment and a queuing 

segment, the length of such segments depending on the flow conditions (these values are evaluated 

at the beginning of each time interval). Furthermore, each arc is associated with a width (Wa) and a 

capacity (Ca). A packet p{u, od, } is defined as an element that contains vehicles of the same class u, 

moving on the same od pair and starting from the origin at the same instant . The movement of a 

packet is simulated considering a directed acyclic graph od,(M, E) (MN, EA), his arcs belonging 

to the feasible routes from o to d at instant . 

An application will be provided to test the proposed procedure. The test area chosen is the Sicily 

Island (South Italy). The area covers an area of about 25000 square kilometers and has about 5 million 

inhabitants. To make the test, an emergency scenario is generated by assuming a disruptive event that 

affects the road network with related reduction in performance. 

 



 

Figure 1 – The proposed procedure 
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Extended Abstract:  

Background:  

With the rapid development of electric vehicles (EVs), gasoline vehicles (GVs) and EVs will 

exist together for a long time. The unique charging behavior characteristics of EVs, the widespread 

range anxiety effect among drivers, and the significant differences in energy consumption between 

the EVs and GVs have a profound impact on the traffic network. Moreover, traffic congestion has 

always been a core research problem in transportation field. The widespread adoption of EVs further 

complicates the issue, requiring innovative strategies to ensure the efficient and sustainable 

transportation system. Compared with existing traffic management measures, the tradable credit 

scheme (TCS) has significant advantages in terms of fairness and efficiency and has the potential to 

solve the congestion problem in hybrid traffic of EVs and GVs. TCS internalizes the negative 

externalities that travelers impose on the transportation system, thereby guiding travelers to 

proactively adjust their travel behavior and effectively alleviate traffic congestion. Considering that 

the origin-destination (OD) demand between OD pairs in real traffic scenarios is not constant but 

fluctuates with the operation status of the traffic network, showing dynamic elastic characteristics, 

this paper considers the elastic OD demand situation to make the research more in line with the 

complex dynamic characteristics of actual traffic. In the actual operation of the traffic system, there 

is an aggregation phenomenon in the spatial distribution of EV charging demands, which easily 

leads to nonlinear congestion effects at charging stations. Therefore, this paper incorporates this 

complex factor into the research scope. The M/G/k queuing theory is used to model the queuing 

time at charging stations as a function of charging flow and demand when considering the limited 

capacity of charging stations and the different charging demands of EVs. The feedback effects on 

the dynamic changes in OD demand and the overall operational efficiency of the traffic network are 

analyzed and quantified when network congestion and charging station congestion are 

superimposed. 

Model and algorithm:  

This paper studies TCS for hybrid traffic of EVs and GVs under elastic OD demand, and 

constructs a mathematical programming with equilibrium constraints (MPEC). In the proposed 

model, the traffic management authority determines the amount of credit on congested links to 

maximize social welfare; the variational inequality is used to describe route and charging choices 

of network travelers to minimize their generalized travel costs under the given tradable credit 

scheme. The generalized travel costs include travel time, energy expenses (electricity for EVs, 

gasoline for GVs), credit costs, and charging time and queuing delays at charging stations. The 

model is as follows: 
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The genetic algorithm is designed to solve the optimization problem, and the gradient 

projection method and the improved continuous average method are used to solve the hybrid 

equilibrium problem. Particularly, considering the behavior characteristics of EV drivers who only 

charge the minimum amount of electricity to reach their destinations as soon as possible, a shortest 

path generation model with a range anxiety threshold is designed to simultaneously optimize route 

selection and charging plans, and it is embedded in the iterative process of the continuous average 

method. 

Results and contributions: 

This paper conducts numerical experiments on the Nguyen-Dupuis network. The results under 

user equilibrium (UE) and TCS are listed in Table 1: 

Table 1: The results under user equilibrium and TCS 

Links 
Results under UE Results under TCS 

𝑣௔
௘ 𝑣௔

௚ 𝑣௔ 𝑣௔ 𝑔௔⁄ 𝜅௔
௘ 𝜅௔

௚ 𝑣௔
௘ 𝑣௔

௚ 𝑣௔ 𝑣௔ 𝑔௔⁄
1-5 64.92  46.70  111.62 1.24 8 16 55.31 35.18  90.49  1.01 

1-12 25.05  34.87  59.92  0.86 - - 16.28 28.32  44.60  0.64 
4-5 34.50  11.63  46.13  0.66 - - 33.31 0.05  33.36  0.48 
4-9 31.90  52.03  83.93  0.93 - - 29.10 57.43  86.53  0.96 
5-6 99.42  11.94  111.36 1.39 0 55 88.62 0.01  88.63  1.11 
5-9 0.00  46.39  46.39  0.77 - - 0.00 35.22  35.22  0.59 
6-7 124.40 11.94  136.34 1.51 19 68 104.90 0.01  104.91 1.17 

6-10 0.10  0.08  0.18  0.00 - - 0.03 0.02  0.05  0.00 
7-8 52.58  11.75  64.33  0.86 - - 55.18 0.01  55.19  0.74 

7-11 71.79  0.19  71.98  1.03 11 74 49.69 0.00  49.69  0.71 
8-2 52.58  46.53  99.11  1.42 17 34 55.18 28.31  83.49  1.19 

9-10 31.90  22.77  54.67  0.78 - - 29.10 33.31  62.41  0.89 
9-13 0.00  75.65  75.65  1.26 60 31 0.00 59.34  59.34  0.99 

10-11 32.01  22.85  54.86  0.78 - - 29.13 33.33  62.46  0.89 
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11-2 24.76  22.85  47.61  0.68 - - 18.99 33.32  52.31  0.75 
11-3 79.03  0.19  79.22  1.13 38 35 59.84 0.02  59.86  0.86 
12-6 25.05  0.08  25.13  0.50 - - 16.28 0.02  16.30  0.33 
12-8 0.00  34.78  34.78  0.50 - - 0.00 28.30  28.30  0.40 
13-3 0.00  75.65  75.65  1.08 56 0 0.00 59.34  59.34  0.85 
𝑇𝑆𝐵 43042.31 49048.11 
𝑇𝑈𝐵 122176.13 109185.19 

𝑇𝐶 79133.82 60137.07 
𝑝௖ - 1.33 

 

To illustrate the sensitivity analysis, we obtain the results under different electricity and 

gasoline prices by increasing and decreasing 10% in Table 2:  

Table 2: The results under different electricity and gasoline prices 
 Change in electricity prices
 -30% -20% -10% 0 +10% +20% +30%

𝑇𝑆𝐵 50100.35  49724.46  49348.37 49048.11 48605.27 48187.28  47873.78 
𝑇𝑈𝐵 109391.62 109962.25  109268.19 109185.19 108829.69 108089.25  107533.81 
𝑇𝐶 59291.27  60237.79  59919.82 60137.07 60224.43 59901.98  59660.03 
𝑝௖ 1.436  1.373  1.376  1.330  1.325  1.327  1.326  
 Change in gasoline prices
 -30% -20% -10% 0 +10% +20% +30%

𝑇𝑆𝐵 52189.11  51060.93  50004.05 49048.11 47959.67 46934.00  46102.49 
𝑇𝑈𝐵 112002.79 110545.88  110570.24 109185.19 107881.95 105805.57  105242.74 
𝑇𝐶 59813.68  59484.94  60566.18 60137.07 59922.28 58871.56  59140.25 
𝑝௖ 1.534  1.486  1.378  1.330  1.308  1.302  1.243  

 

The TC and TUB are obtained by choosing different average time value of EV user, 

demonstrated in the following Figure 1:  

 
Figure 1: The TC and TUB by choosing different average time value of EV user 

 
From the results, the following conclusions can be drawn: 

(1) After implementing TCS, the total social welfare of the transportation system is 
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significantly improved, while the total travel cost of the system is greatly reduced, and the traffic 

conditions on congested links are significantly improved. However, the total demand of the traffic 

network has decreased, indicating that the credit charging inevitably have a certain inhibitory effect 

on users’ travel. This scheme not only alleviates traffic congestion by guiding travelers to change 

their route choices but also further reduces traffic congestion by lowering OD demand. Notably, 

TCS also effectively increases the proportion of EVs in the equilibrium travel demand, encouraging 

some travelers to abandon GVs and switch to more environmentally friendly EVs. 

(2) Both the decrease in electricity prices and gasoline prices increase social welfare, and the 

fluctuation of gasoline prices has a more significant impact on social welfare. Both raising the 

gasoline price and lowering the electricity price can increase the penetration rate of EVs in the 

equilibrium OD demand. Overall, raising the gasoline price has a more significant effect. This 

provides a reference for the traffic management authorities when formulating policies on how to 

balance the adjustment of gasoline prices and electricity prices. 

(3) The increase in the average time value of EV users leads to an exponential decline in the 

total social welfare and significantly suppresses the overall OD demand. The proportion of EVs in 

the total travel also drops sharply. This is mainly because the value of travel time, charging time, 

and queuing time becomes more expensive, for EV users with a high time value concept. Although 

EVs have an advantage in energy consumption, their longer charging and queuing times may make 

the overall travel cost higher than those of GVs. Therefore, most travelers will abandon EVs and 

choose GVs for travel. The total OD demand is also suppressed due to this change in travel mode 

and the increase in travel costs. In addition, the queuing time at charging stations is also significantly 

affected. By analyzing the changes in charging flow, the utilization rate of charging stations is 

evaluated, which helps charging station operators and traffic management authorities to plan and 

manage charging station resources more scientifically, thereby better meeting the changing needs of 

EV users. 

The innovation of this paper is as follows: Firstly, this paper researches the mixed equilibrium 

problems of hybrid traffic of EVs and GVs under the elastic OD demand to reflect the dynamic 

characteristics of OD demands in reality. Secondly, this paper adopts an approximate queuing time 

function related to charging demand and charging flow to more accurately reflect the complex 

scenario of the interaction between queuing at charging stations and traffic flow.  

Therefore, the contribution of this paper lies in two sides: (1) Determining the TCS for hybrid 

traffic of EVs and GVs under elastic OD demand integrating the approximate average waiting time 

of the M/G/k system. (2) Exploring the impact of electricity prices, gasoline prices, and travel time 

value on OD demand and overall operational efficiency in the transportation network. The results 

can provide references for traffic management authorities to regulate traffic and optimize the 

allocation of charging station resources for hybrid EVs and GVs. 

The deterministic user equilibrium is used in this paper to describe the behavior of the travelers. 

A more realistic and general situation is that OD demand and travel times are random variables or 

travel times are perceived by travelers in imperfect, stochastic manner. Thus, the stochastic user 

equilibrium (SUE) principle can be considered in the future to research the uncertain cases.  

Keywords: Tradable Credit Scheme (TCS); Hybrid Traffic of Electric and Gasoline Vehicles; 

Elastic OD Demand; Mathematical Programming with Equilibrium Constraints (MPEC) 
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Extended Abstract 

Effective traffic management in wide area networks, considering both urban 

and extra-urban, remains a critical challenge, especially in the presence of 

dynamic and unpredictable congestion patterns. This study proposes a gating 

traffic control strategy that integrates Day-to-Day (DTD) and Within-Day 

control mechanisms to optimize traffic flow in large-scale applications, such 

as highways connecting multiple urban areas. The DTD control regulates 

traffic based on historical and expected static flow patterns, ensuring balanced 

long-term demand distribution. In contrast, the Within-Day control 

dynamically adjusts gating measures in response to real-time disruptions, 

such as traffic incidents, lane closures, or sudden congestion spikes. The 

intended model functions as a Traffic Management Centre (TMC), 

continuously monitoring and adjusting traffic flow based on evolving 

conditions. It is expected that the proposed approach will enhance traffic 

efficiency by mitigating congestion, improving travel time reliability, and 

providing a more adaptive response to traffic fluctuations. Future research 

will focus on validating these hypotheses through simulations and real-world 

case studies. 

Key words: Gating Control, TMC, Traffic Management  
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resulting from economies of scale
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1 Motivation

Economies of scale arise when the utility of a good increases with its usage.
We give two examples in the transportation context. (i) In freight assignment,
increasing the demand for one shipment alternative allows to deploy larger ve-
hicles and terminals, which reduces the unit shipment cost and may further
increase the demand for this alternative. (ii) Including shared mobility services
with adaptive pricing schemes in public transport assignment means that the
high usage of a shared service allows the provider to reduce its price and further
increases its attractiveness.

Including such scale effects in traffic assignment easily leads to a multiplicity
of solution points (equilibria). The objective of this ongoing work is to devise
techniques that support the credible deployment of simulation-based traffic as-
signment in settings where a multiplicity of solutions can be expected. See
Schmöcker et al. (2014) and Bar-Yosef et al. (2013) for further illustration.

Technically, we consider a discrete-time stochastic assignment process with a
stationary distribution of several islands of (weakly connected) probability mass.
The process spends, on average, enough iterations in one such region to settle
in an apparently stationary local distribution before eventually (stochastically)
leaving that region and settling somewhere else. This means that observing the
process over a limited number of iterations may give a starting point dependent
impression of its stationary distribution. This effect has already been described
by Watling (1996); our work is more geared towards the study of scale effects.

2 Basic setup

Consider a population of decision-making agents indexed by n = 1, . . . , N . De-
note the choice set of agent n by Cn. Let C1:N = C1 × C2 × . . . × CN be the
population’s joint choice set, and let i1:N ∈ C1:N represent the choices of all
agents.

We are interested in studying models for policy analysis and introduce a
policy parameter λ ∈ [0, 1] where zero means ”base case”, one means ”policy
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case”, and values in-between represent a partical policy implementation. A
policy may affect agent choices as well as the network loading, as described
immediately below.

Let X be the set of physical system states, and let g : (C1:N , [0, 1]) → X
be the policy-sensitive network loading where g(i1:N , λ) computes the network
conditions resulting from the choices i1:N given the policy λ. Each agent is
equipped with a policy-sensitive choice model Pn : (Cn,X , [0, 1]) → [0, 1] where
Pn(i | x, λ) is the probability that agent n chooses alternative i given the net-
work conditions x and policy λ. Let P : (C1:N ,X , [0, 1]) → [0, 1] represent the

population choices in that P (i1:N | x, λ) =
∏N

n=1 Pn(in | x, λ).
A simple simulation version of the considered process model is given in Al-

gorithm 1. For simplicity, agents only remember their most recent network
condition experience.

Algorithm 1 Stochastic process assignment model

Set policy parameter λ.
Set initialize initial network conditions x(0).
for k = 1, 2, . . . do

Simulate choices i
(k)
1:N ∼ P (· | x(k−1), λ).

Simulate network conditions x(k) = g(i1:N , λ).
end for

3 Small example

We consider a two-alternative scenario with N = 1000 homogeneous agents who
all face identical choice sets C1 = . . . = CN = {1, 2}. The network loading is
policy-insensitive and merely counts the number of agents using alternative one:

g(i1:N , λ) =

N∑
n=1

1(in = 1). (1)

A binomial logit choice model, common to all agents, reflects utilities of scale:

Pn(1 | x, λ) = eµ·x/N

eµ·x/N + eµ·(1−x/N)
(2)

with µ ≥ 0. Policy-sensitivity will be established further below by making µ a
function of λ.

The positive µ parameter in combination with utility increasing with the use
of an alternative suggests that this scenario has a tendency to attain stationarity
either at x values relatively near zero or relatively near N , with possibly very
rare switches in-between. Figure 2 illustrates the number of alternative-1 users
over 10’000 assignment iterations for µ = 2.08. One observes that the system
may stay for thousand of iterations in a state where most decision makers use one
particular alternative before flipping to the opposite situation of most decision
makers using the other alternative.
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Figure 1: Small example. One process realization.

4 Metropolis Hastings based model analysis

To explore solution multiplicity, we deploy the Metropolis-Hastings (MH) algo-
rithm (Hastings, 1970). We define the state space explored by the MH process
as X ×C1:N ,×[0, 1], where one element (x, i1:N , λ) of this state space consists of
a realization of the network conditions, choices for all agents in the population,
and a setting of the policy parameter.

Letting ϕ : X → R+ denote a zero-centered probability density function over
the network conditions, we construct the proposal distribution

q ((x, i1:N , λ) → (x′, i′1:N , λ′)) = ϕproposal(x− x′) · P (i′1:N | x′, λ′), (3)

meaning that simulating a proposal amounts to (i) uniformly drawing λ between
zero and one, (ii) drawing x′ from a distribution centered at x, and drawing i′1:N
by evaluating the choice model given x′ and λ′.

As the target weights, we use

w(x, i1:N , λ) = P (i1:N | x, λ) · ϕtarget(x− g(i1:N , λ)), (4)

where the first factor evaluates the likelihood of obtaining the choices i1:N given
the network conditions x and the second factor measures the deviation between
the network conditions x and the result from a network loading of the choices
i1:N . In combination, these terms measure the mutual consistency of travel
choices and network conditions; this aims to approximate the stationary condi-
tions attained by Algorithm 1.

Given these choices of proposal distribution and target weights, we obtain
the simple acceptance probability

α ((x, i1:N , λ) → (x′, i′1:N , λ′)) = min

{
1,

ϕtarget(x
′ − g(i′1:N , λ′))

ϕtarget(x− g(i1:N , λ))

}
. (5)
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Important for practical use with a black-box simulator, this setting requires only
drawing choices and loading the network; no knowledge of the underlying choice
distribution or concrete properties of the network loading is needed.

5 Small example, continued

We create a policy-sensitive version of the small example by letting

µ = µ(λ) = (6λ− 3)2 + b (6)

with b a structural model parameter; we explore below cases with b ∈ [1, 4]. For
any value of b within that range, µ is strictly positive; it is largest for λ = 0 and
λ = 1 and smallest for λ = 0.5. By construction, µ(0) = µ(1) so that there is
no difference between the base case and the policy case.

We assume that data collected from reality indicates that the base case
solution is the one with relatively few users on alternative one, i.e. x near zero
for λ = 0. Given this starting point, we would like to anticipate the effect of
gradually introducing the policy measure, i.e. moving λ from zero to one. For
this, we deploy the MH algorithm where we instantiate both ϕproposal and ϕtarget

as univariate Gaussian distributions with zero mean and a standard deviation
of five.

We run four experiments. All experiments initialize the MH process with
x = 0 as an approximation of the observable base case. Extracting one sample
every 10’000 iterations and collecting in total 1000 samples per experiment (we
did not attempt to fine-tune the algorithm) yields the results shown in Figure 2.

Each single point (λ, x) represents a policy parameter λ and a realization
of the approximate corresponding stationary number of alternative-1 users x.
For b = 3 and b = 2.5, a unique path to the policy case λ = 1 is identified.
At b = 2.0, a bifurcation arises, and the MH algorithm succeeds to explore all
branches of this bifurcation. At b = 1.0, two consecutive bifurcations can be
observed. The solutions around x = 0 resp. x = 1000 are locally stable (may
persist for many iterations), and those around x = 500 are unstable.

Even though available real data may allow to select the right solution in
the base case (i.e. to push the simulation model by calibration towards a state
that is compatible with the data), this is not possible in the policy case. Which
solution a simulation model will predict in the policy case is, without further
analysis, a matter of chance (in that it depends on how the simulation model is
internally initialized).

The MH analysis thus yields (also practically) valuable insight. For b =
3, 2.5, it supports the prognosis that the policy case will not differ from the base
case. For b = 1, 2, it indicates that the result of implementing the policy is
diametrically ambiguous, indicating a need for policy refinement or at least a
very careful approach to assessing its implications.
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Figure 2: Small example. Alternative-1 users over policy parameter.
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6 Outlook

We aim to operationalize the analysis presented here for large-scale simulation
models in complex scenarios where solution multiplicity can no longer be an-
alyzed by inspecting model structure (as in Iryo and Watling, 2019) or with
anecdotal simulation evaluations. The MH machinery is versatile but computa-
tionally demanding; this needs to be addressed. We work towards the Swedish
national freight model Samgods (Westin et al., 2016) as a real-world test case.
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SHORT SUMMARY

A round-trip based alternative to origin/destination matrices is presented. The formal approach
treats the round-trips of a population as a distributed quantity and adopts statistical techniques
to the evaluation of this distribution. An operational Bayesian calibration approach is presented
as a round-trip-based counterpart to origin/destination matrix estimation. Several concrete
applications of the framework are presented. We believe that the vastly increased representative
power of a round-trip-based model when compared to origin/destination matrices, in combination
with its compatibility with modern agent-based simulation packages, outweighs its somewhat
more involved technical development.

1 INTRODUCTION

Origin/destination (OD) matrices are ubiquitous in both person and freight network assignment
modeling. The rows of a static OD matrix represent origins, its columns represent destina-
tions, and its entries represent (freight or person) transport between origins and destinations.
Dynamic OD matrices add a (usually discrete) time index, meaning that they map the triplet
(origin, destination, time index) onto a transport demand. OD matrices are covered in any trans-
port modeling textbook (e.g., Ortuzar and Willumsen, 2004; Cascetta, 2001).

The widespread use of OD matrices may be traced back to three ingredients: their simple and
intuitive structure, their compatibility with mainstream network assignment models, and the
availability of a comprehensive mathematical machinery for estimating OD matrices. Still, their
appealing simplicity comes with limitations: An OD matrix does not encode any relationship
between the individual movements it represents, neither does a dynamic OD matrix encode any
temporal relationships. The resulting independence assumption across movements may violate
mass conservation (e.g., more travelers leave a shopping mall than enter it) and causality (e.g.,
even if the time-sum of entries and exits to a shopping mall is zero, the entries may occur after
the exits). In addition, the cell entries of a single OD matrix represent a homogeneous number of
anonymous movements, and capturing heterogeneity by introducing group-specific OD matrices
quickly reaches the computational limits of representing a correspondingly large number of OD
matrices with correspondingly small entries. For similar reasons, the number of time steps resp.
origins and destinations (usually traffic analysis zones) is limited, introducing a temporal resp.
spatial aggregation bias.

These observations are not new and were one of the drivers for developing agent-based models
(Horni et al., 2016; Nagel and Flötteröd, 2012). An agent-based transport demand is represented
based on one trip-list per agent, with each trip being (minimally) annotated by origin, desti-
nation, and departure time. This allows, at the agent level, to ensure both spatial consistency
(origin of one trip must be destination of the previous trip) and temporal consistency (departure
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time of one trip must not be earlier than arrival time of the previous trip). Agent-based models
for strategic planning (where a long-term, stationary state of the transport system of interest
is considered) may consider circular trip lists: Person agents return to their homes on a daily
basis, freight vehicle agents return to their depots at possibly larger time intervals (consider, for
example, weekly train schedules).

This document describes an operational simulation/estimation framework for trip-list-based
transport representations. It makes concrete and develops further the ideas sketched in Flötteröd
(2024), going beyond that reference by (i) specifying in detail a round-trip sampling approach,
(ii) considering not just one but arbitrarily many round-trips simultaneously, and (iii) presenting
a Bayesian calibration framework. We believe that the vastly increased representative power of
this approach when compared to OD matrices, in combination with its compatibility with modern
agent-based simulation packages, outweighs the somewhat more involved technical developments.

2 METHOD

Round-trip-lists

We discretize time into intervals (time bins) k ∈ K = {1, . . . ,K} and consider a population of
agents n = 1, . . . , N . A location set Ln of size Ln is available to agent n. We define agent

n’s location list ln = [l
(1)
n , . . . , l

(Jn)
n ] and departure time bin list dn = [d

(1)
n , . . . , d

(Jn)
n ] where

Jn ∈ {1, . . . ,min{Jmax,K}} is the finite length of both lists, l
(j)
n is the origin location of the jth

trip, and d
(j)
n is its departure time bin. The location and departure time list of agent n constitute

its trip list xn = (ln, dn). To treat trip lists independently of an agent, we introduce the function
J(·) that maps a trip list onto its length; obviously, J(xn) = Jn. Causality is established by
requiring

d(j)n < d(j+1)
n for all j ∈ {1, . . . , Jn − 1}. (1)

(Note that this implies the above requirement Jn ≤ K.) Repeated trips with the same departure
location are allowed for to enable the representation of intra-zonal travel when locations are
traffic analysis zones.

We subsequently consider round-trips where the destination location of the last trip is the depar-
ture location of the first trip.1 For instance, given an hourly time discretization, the round-trip

([home, office, shopping mall], [6, 16, 17])

means that the considered agent leaves home at 6 am for office work, departs at 4 pm from the
office, makes a short stop at the shopping mall that is planned to end at 5 pm, and then returns
back home. The departure time bins represent a desired time structure that may or may not be
compatible with a given physical reality of finite travel speeds; more on this further below.

We consider distributed population round-trips X = [X1, . . . ,XN ] where Pr(X = x) = Pr(X1 =
x1, . . . ,XN = xN ) is a discrete probability with (for finite population and maximum trip-list
length) finite support. To evaluate this distribution, a method to sample round-trips from a
given target distribution p(x) is required. For generality, we do not yet make assumptions about
where this target distribution comes from (ample examples further below) but merely assume it
to be given. We rely here on the Metropolis-Hastings (MH) algorithm (Hastings, 1970). This
algorithm has well-known advantages (generality) and disadvantages (possibly long run-times),
the latter having been addressed in a substantial body of literature. Ross (2012) offers a detailed
introduction. We focus subsequently on a basic round-trip-specific instance of the MH algorithm,

1To capture trip-lists that are not round-trips within the same framework, one may add a (Jn+1)th trip where

l
(Jn+1)
n defines the destination of the Jnth trip and d

(Jn+1)
n is arbitrary.

2



omitting general-purpose discussions around its practicalities (convergence tests, extraction of
statistics, etc.).

The state space of the considered MH algorithm is composed of population round-trips x =
[x1, . . . , xN ]. The algorithm requires an irreducible proposal distribution p(x, y) from any state
x to any state y, which is subsequently developed.

MH proposal distribution for a single round-trip (N = 1)

Since a single round-trip is considered, the agent index n is suppressed in this section. Four
operations on a single round-trip are subsequently defined; their combination will yield the
desired proposal distribution.

INS(ERT) Given a round-trip x of length J < Jmax, an insertion index i is uniformly drawn
from {1, . . . , J +1}. A new location is drawn uniformly from the location set L, and a new
departure time bin is drawn uniformly from the set of not yet used departure time bins
K\ ∪J

j=1 d
(j). For i ≤ J , these values are inserted into the location and departure time list

at index i. For i = J+1, they are appended to the end of the lists. To comply with (1), the
departure time list is subsequently ordered by increasing magnitude without changing the
ordering of the location list. Letting the round-trip y be the result of an insert operation
at index i in round-trip x, the probability of obtaining y from x is

qINS(x, y) =
nLOC-INS(x, y)

J + 1
·
1

L
·

1

K − J
(2)

where nLOC-INS(x, y) is the number of location indices in round trip x where inserting a
location allows to recover the location sequence of round trip y. Since the length of the
round-trip increases by one, the new round-trip differs from the old one.

REM(OVE) Given a round-trip x of length J > 0, two indices i and j are independently and
uniformly drawn from {1, . . . , J}, the ith element is removed from the location list, and the
jth element is removed from the departure time list. Letting y be the result of a remove
operation from round-trip x, the probability of obtaining y from x is

qREM(x, y) =
nLOC-REM(x, y)

J2
(3)

where nLOC-REM(x, y) is the number of location indices in round trip x where removing the
location recovers the location sequence of round trip y. Since the length of the round-trip
decreases by one, the new round-trip differs from the old one.

FLIP_LOC(ATION) Given a round-trip x of length J , a location flip index i is uniformly
drawn from {1, . . . , J}. A new location is uniformly drawn from L\l(i) to replace l(i).
Letting y be the result of flipping a location in round-trip x, the probability of obtaining
y from x is

qFLIP_LOC(x, y) =
1

J
·

1

L− 1
. (4)

Since the newly drawn location must differ from the original value, the new round-trip
differs from the old one.

FLIP_DEP(ARTURE) Given a round-trip x of length J , a departure time flip index i is
uniformly drawn from {1, . . . , J}. A random departure time is drawn from K\∪J

j=1 d
(j) to

replace d(i). The resulting departure time list is sorted by increasing magnitude without
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changing the ordering of the location list. Letting y be the result of flipping a departure
time in round-trip x, the probability of obtaining y from x is

qFLIP_DEP(x, y) =
1

J
·

1

K − J
. (5)

Since the newly drawn time must differ from the original value, the new round-trip differs
from the old one.

Given a round-trip y that results from applying any of the above operations to a given round-trip
x, the applied operation is uniquely given: J(y) > J(x) can only result from INS; J(y) < J(x) can
only result from REM; J(x) = J(y) and lx 6= ly can only result from FLIP_LOC; J(x) = J(y)
and dx 6= dy can only result from FLIP_DEP; J(x) = J(y) and lx = ly and dx = dy is impossible.
Let φINS, φREM, φFLIP_LOC, φFLIP_DEP be the selection probabilities of the respective operations;
they are strictly positive and sum up to one.2 Drawing an operation, applying it to round-trip
x and receiving round-trip y hence occurs with the following probability:

q[1](x, y) =































φINS · qINS(x, y) if J(y) > J(x)

φREM · qREM(x, y) if J(y) < J(x)

φFLIP_LOC · qFLIP_LOC(x, y) if J(y) = J(x) ∧ lx 6= ly

φFLIP_DEP · qFLIP_DEP(x, y) if J(y) = J(x) ∧ dx 6= dy

0 otherwise.

(6)

This distribution is irreducible because any state (round-trip) b can be reached from any other
state a with positive probability: (i) If J(a) = J(b), a sequence of FLIP_LOC and FLIP_DEP
operations that turn a into b is possible. (ii) If J(a) < J(b) resp. J(a) > J(b), a sequence of INS
resp. REM operations is possible that yields an intermediate state a′ with J(a′) = J(b), which
then can be turned into b according to (i).

MH proposal distribution for multiple round-trips (N > 1)

We return to indexing the different round-trips in x by n = 1, . . . , N and compose the proposal
distribution for population round-trips from that for single round-trips. We sweep once over all
round-trips n = 1, . . . , N and modify round-trip xn with probability φMOD > 0 into yn 6= xn
according to q(xn, yn) in (6), otherwise we let yn = xn.3 If this results in x = y (meaning that no
modification has taken place), we repeat the process until x 6= y. This implements the proposal
distribution

q[1:N ](x, y) =











1
1−φN

MOD

∏N
n=1

{

φMOD · q[1](xn, yn) if xn 6= yn

1 otherwise
if x 6= y

0 otherwise.

(7)

We have already established that any single round-trip can be turned into any other single round-
trip by a suitable operation sequence. Consider now the problem of turning any population
round-trip a = (a1, . . . , aN ) into any other population round-trip b = (b1, . . . , bN ). This can be
achieved by only selecting n = 1 for modification until a1 has been turned into b1, then doing
the same for n = 2, etc. This sequence of selecting round-trips for modification arises with
positive probability, and so does every single modification from an into bn. This establishes the
irreducibility of the population proposal distribution q[1:N ].

2Our experimentation so far suggests that a uniform selection distribution performs well.
3Letting φMOD = 1/N has performed well in our experimentation so far.
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MH target weights

A major advantage of the MH algorithm in the given context is that it only requires an un-
normalized version t(x) of a given target distribution p(x), meaning that any t(x) with p(x) =
t(x)/

∑

x′ t(x′) for all x is sufficient to use the algorithm to draw from p(x). This avoids a
normalization of the target distribution over the possibly gigantic state space.

The time structure of a round-trip represents an ambition; its physically feasibility depends on
the movement duration between its locations. When there is a need to evaluate the physical
realization of a round-trip, a deterministic mapping g from the population round-trips x onto
some data structure representing the realized movement experiences (a movement simulation)
can be used. The corresponding target distribution would still only depend on x but internally
also evaluate the movement simulation g. We subsequently suppress the possible use of g when
writing out a target distribution.

The concrete form of the target distribution is application-specific. We discuss below the problem
of calibrating a population round-trip distribution against some given data-set. This constitutes
the round-trip-based counterpart of OD matrix estimation.

Round-trip calibration and uninformed prior distribution

We adopt a Bayesian approach. Given the data y, a likelihood function p(y | x) is formulated that
expresses the probability of observing the data y given the population round-trips x. A Bayesian
approach to conditioning the round trip distribution onto the data amounts to sampling from
the (un-normalized) target distribution

t(x | y) ∼ p(y | x)pprior(x) (8)

where the prior distribution pprior(x) represents available knowledge about the population round-
trips before having seen the data y; if available, this may comprise travel behavioral assumptions
(Flötteröd et al., 2011).

The construction of an uniformed prior distribution requires some care. Considering any agent
n, the number of round-trip configurations of length J available to that agent is

#n(J) = LJ
n

(

K

J

)

(9)

where the first factor accounts for all possible location configurations and the second factor rep-
resents the number of possible departure time configurations, given their ordering by increasing
magnitude. This means that the number of available round-trip configurations of a given length
grows combinatorically with that length. A naive uniform prior distribution over all possible
round-trips of an agent would hence be biased towards longer round-trips.

A maximum entropy (ME) approach is hence adopted to represent a maximally uninformed
round-trip distribution. The prior distribution pME

n (xn) over all possible round-trips of agent
n is chosen to maximize entropy subject to the constraint that the expected round-trip length
equals some exogenously given parameter Jn.4 The corresponding Lagrangian reads

L(pME
n , λ, γ) = −

∑

xn

pME
n (xn) ln p

ME
n (xn) . . . (10)

+λ ·

(

∑

xn

pME
n (xn)− 1

)

+ γ ·

(

∑

xn

J(xn)p
ME
n (xn)− Jn

)

(11)

4The arguably simplest setting of this parameter is Jn = J for all n, with J the estimated total number of
trips made in a study region divided by its population.
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where the first constraint with multiplier λ requires probabilities to sum to one and the second
constraint with multiplier γ enforces the expected length. Evaluating first-order conditions on
pME
n :

dL

dpME
n (xn)

= 0 ⇒ eλ−1eγJ(xn). (12)

Inserting this into the probability sum constraint yields

pME
n (xn) =

eγJ(xn)

∑min{K,Jmax}
J=0 #n(J)eγJ

, (13)

which has, unsurprisingly (Anas, 1983), the form of a multinomial logit round-trip choice model
with scale parameter γ. This parameter is obtained by inserting (13) into the mean length
constraint and numerically solving the one-dimensional problem

∑min{K,Jmax}
J=0 J ·#(J)eγJ

∑min{K,Jmax}
J=0 #(J)eγJ

= Jn (14)

for γ.

Overall, the ME population round-trip distribution becomes

pME(x) =
N
∏

n=1

pME
n (xn) (15)

in combination with (13) and (14). The symmetry of this development to the long-standing
ME-based estimation of OD matrices may be noteworthy (Van Zuylen and Willumsen, 1980).

3 RESULTS AND DISCUSSION

A primary result of this work is the above described modeling/estimation framework, which is
accompanied by a freely available software implementation at https://github.com/vtisweden/
matsim-projects/tree/master/roundtrips. The remainder of this section summarizes existing
and ongoing applications of the framework, illustrating its versatility and applicability.

An early version of the framework was applied by Flötteröd (2024) to study daily electrical
vehicle charging patterns in the Swedish municipality Skellefteå. To accommodate location-
specific charging decisions, the physical network was extended into one where each location was
duplicated into one (location, charging) and one (location, no-charging) node; sampling paths on
the extended network hence also induced temporal charging patterns. The target distribution
aimed to represent basic time- and land use assumptions. Figure 1(left) shows part of the study
region, and Figure 1(right) exemplifies the estimated home- and time-of-day-dependent en-route
charging patterns.
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Figure 1: Electric vehicle charging analysis

A more recent application is that of Charalampidou et al. (2025) where implications of shopping
location placement and opening times in a fifteen-minute-city setting are investigated. Here,
the round trip encodes weekly activity/travel patterns. To encode activity participation, the
physical network is extended into one where each location is duplicated into several (location,
activity) nodes, representing participation in a particular activity at that location. The target
distribution is set such that round trips respecting weekly activity-specific time use assumptions
receive high probabilities. Figure 2(left) shows the study region (the Liesing district in the city
of Vienna, Austria) and Figure 2(right) exemplifies the resulting shopping activity participation
time structure.

Figure 2: Time use and activity participation in a 15-minute-city

An instance of a multi-round trip calibration for the entire city of Vienna is presented by
Rupprecht et al. (2025). The approach starts out from the ME prior (15) and combines it with
two likelihood terms, one representing the all-day reproduction of an available static target OD
matrix, and the other one representing spatio-temporal travel and activity participation summary
statistics. The scatter-plot in Figure 3(left) displays the almost perfect reproduction of the static
target OD matrix from a representative population of 50’000 round-tips, while Figure 3(right)
illustrates the within-day time structure of the same 50’000 round-trips. The resulting popula-
tion round-trips serve as initial travel plans file for an agent-based route/mode/departure time
network assignment model.
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Figure 3: All-day travel pattern synthesis for agent-based traffic assignment

One ongoing but not yet documented application is the inclusion of travel survey data in the
population round-trip estimation problem, aiming to complement the Swedish national person
transport model with time-of-day dynamics. Another application is the generation of freight
vehicle round-trips for Sweden and neighboring countries, aiming at an improved representation
of freight consolidation in the Swedish national freight model.

4 SUMMARY

An operational round-trip based alternative to OD matrices has been presented, comprising
a formal framework, an estimation method, and several application examples. The idea of
replacing OD matrices by (round-)trip-lists has been around for a long time, and any agent-based
transport simulation packages inevitably relies on some kind of traveler- or vehicle (round-)trip-
list discretization of a possibly given OD matrix. This document contributes to this a formal
and operational machinery to sampling population round trips from general target distributions.
A concrete Bayesian calibration approach resting on this machinery is developed, offering a
round-trip based alternative to OD matrix estimation.

Ample further developments of the presented method are possible; these comprise the specifi-
cation of other than uniform MH proposal distributions, refinements of the basic MH approach
(e.g. into Gibbs sampling where the round trip distribution of any single agent is conditioned
on the round trips of all other agents), and the not obvious exploitation of parallel computing
facilities to speeding up the inherently sequential MH process. A comparison to generative AI
approaches such as that of Shone and Hillel (2024) may be attempted, even though much of the
appeal of the presented method is its derivation from first principles, while generative AI appears
to be more of a black-box approach.
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Abstract—This paper develops a network-level equilibrium framework
for analyzing mixed traffic involving human-driven vehicles (HVs) and
autonomous vehicles (AVs), emphasizing both efficiency and safety. A
Crash Risk Cost (CRC) model, incorporating probabilistic safety risks
at road links and intersections, is integrated into a generalized travel
cost function. We formulate a variational inequality (VI) model to
capture mixed traffic equilibrium under various AV penetration rates and
behavioral strategies: selfish user equilibrium (UE), private monopolist
(fleet-based), and social planner (network-wide optimization). Numerical
experiments on the Nguyen-Dupuis network indicate that moderate AV
penetration (10%) initially increases system costs due to mixed-traffic
inefficiencies, while higher adoption rates lead to notable cost reductions.
The social planner scenario demonstrates the greatest improvement,
underscoring the importance of coordinated AV deployment strategies
to achieve system-wide safety and efficiency benefits.

I. INTRODUCTION

Autonomous vehicles (AVs) are seen as a promising solution to
improving urban traffic efficiency and reducing accidents [1]. AVs
help manage traffic by adjusting speed and following distances,
reducing congestion waves. On safety, studies report that over 90%
of road crashes result from human error [2]. By shifting driving tasks
to Automated Driving Systems (ADS), AVs can significantly reduce
these errors, leading to fewer crashes and fatalities [3]. However,
these benefits rely on high AV adoption rates, which will take time
[4]. Until then, AVs will coexist with human-driven vehicles (HVs) in
mixed traffic flow, where AV-HV interactions may lead to conflicts,
especially at intersections [5]. These challenges highlight the need
for models assessing AV-HV interactions and their network-wide
impacts.

HVs typically make route choices based on Stochastic User
Equilibrium (SUE), minimizing personal costs with limited traffic
information [6]. AVs, in contrast, can access real-time traffic data
through V2V and V2I communication, enabling more informed
decisions [7]. Unlike HVs, AVs can be programmed to optimize
system-wide performance, but their objectives vary. Private AVs
minimize personal costs, fleet operators like Tesla or Baidu optimize
for their vehicle fleets, and governments may use AVs to improve
overall traffic efficiency . These different objectives shape AV route
choices, influencing traffic patterns and risk distribution.

With AV adoption increasing in cities like Shanghai and Los
Angeles, research on mixed traffic has expanded [8]. Past studies on
human-driven vehicles (HVs) explored factors like travel time [9],
fuel consumption [10], route reliability [11], and road safety [12].
However, studies on AV route choice remain limited. Most research
focuses on travel time [13], with some considering fuel costs [14] or
AV ownership costs [15]. Yet, research suggests that in mixed traffic,
safety is a primary concern.

To balance safety and efficiency, previous studies explored strate-
gies like dedicated AV lanes and adaptive control systems [16]. Other
studies analyzed AVs’ impact on highway safety [17], particularly

regarding rear-end collision risks. However, these studies mainly
focus on road links, neglecting intersections, where AV-HV conflicts
are more likely [5]. Some studies optimize single intersections with
multi-lane control [18], while others analyze multiple intersections
considering upstream-downstream interactions. However, focusing
only on intersections or road links may miss the broader impact
of mixed traffic on the entire network. Since transportation planners
prioritize system-wide performance, understanding how AV-HV travel
behavior influences overall traffic patterns is critical.

This paper addresses this gap by developing a network-level
equilibrium model that captures AV-HV interactions, considering
efficiency and safety at both road links and intersections. Using
Crash Risk Cost (CRC) models, we analyze mixed traffic equilibrium
under different AV adoption levels. Our previous research on network
equilibrium has combined safety and efficiency by modeling risk
costs through probability distributions [12]. However, two key chal-
lenges remain: (i) Integrating mixed traffic into equilibrium models
– Most studies focus separately on AVs or HVs, lacking a unified
model for their shared network interactions. (ii) Modeling adaptive
AV behavior – AVs adjust driving strategies dynamically, requiring a
more sophisticated approach to reflect their effects on network-wide
equilibrium.

II. METHODOLOGY

This section develops a mixed traffic equilibrium framework that
integrates both efficiency and safety considerations. We first intro-
duce the CRC model to quantify safety risks on road links and
intersections, capturing both reliability and uncertainty. These safety
measures are incorporated into a generalized travel cost function,
which combines travel time and crash risk costs. Based on this,
we formulate a variational inequality (VI) model to analyze route
choice behavior under different AV adoption scenarios, where HVs
follow a stochastic user equilibrium (SUE) and AVs exhibit varying
travel strategies. This framework provides a comprehensive approach
to evaluating mixed traffic flow dynamics and network-wide impacts.

A. Extend network structure

This study utilizes the commonly used Nguyen and Dupuis net-
work as shown in Fig. 1a. Typically, this network consists of links and
nodes. However, in this study, we focus on the impact of intersection
(i.e., node) turning movements on safety performance. Therefore, we
expand the nodes into left-turn, right-turn, and through movements.
For details, see Fig. 1b.



l Turn left
l Turn right
l Go straight

(a) Original Network (b) Extended Network

Fig. 1. Comparison of the original and extended Nguyen and Dupuis network.

B. Safety models

The uncertainty of road crash risk subconsciously influences trav-
elers’ behaviors. Travelers evaluate road safety not only based on an
exact value but also on their knowledge of how uncertain the safety
of the road is. A single deterministic value is inadequate to reflect
this safety perception. Thus, road crash risk r is assumed to be a
random variable that follows a distribution with a mean E(rp) and
variance Var(rp).

1) Crash Risk Cost: Crash Risk Cost (CRC) describes the potential
cost (e.g., economic or time loss) caused by traffic accidents on
a specific route p. It is assumed that the CRC rp follows a log-
normal distribution. For a path p, the mean and variance of CRC are
determined by the CRC of its road links and intersection turns (as
shown in Figure 1):

rp ∼ N (E(rp),Var(rp)) (1)

E(rp) =
∑
a∈A

(E(ra) · δpa) +
∑

a→b∈A′

(E(ra→b) · δpa→b), (2)

Var(rp) =
∑
a∈A

(Var(ra) · δpa) +
∑

a→b∈A′

(Var(ra→b) · δpa→b), (3)

where E(rp) is the expected value of CRC, representing the long-
term average safety characteristic, and Var(rp) is the variance of
CRC, capturing the uncertainty in safety.

For links, it is assumed that AVs and HVs have the same average
speed on a given link in this study. This is because vehicles typically
travel in a car-following manner, and additional overtaking behavior
is not considered in this paper. Therefore, the CRC distribution for a
link is expressed as Equation 4, Equation 5, and Fig.2a:

E(ra) = taγ(va)
η (4)

Var(ra) = t2aγ̄(va)
η̄ (5)

(a) Relationship between mean CRC
and average speed for a link.

(b) Relationship between mean CRC
and AV adoption for an intersection.

Fig. 2. Mean CRC for a link and an intersection.

where ta is the travel time on link a, va is the average speed,
γ and γ̄ are adjustment coefficients, and η and η̄ are exponential
coefficients greater than 1.

For intersections, assuming that turning movements and mixed
traffic flows are independent, the mean of the CRC distribution
under mixed traffic conditions is given by the product of the means
of two distributions: the safety cost associated with mixed traffic
flow, N (Eα(ra→b),Varα(ra→b)), and the safety cost related to AV
adoption, N (Eβ(ra→b),Varβ(ra→b)).

The safety cost associated with mixed traffic flow are shown in
Equation (6), Equation (7).

Eα(ra→b) = τ(xAV + xHV )
ψ (6)

Varα(ra→b) = τ ′(xAV + xHV )
ψ′

(7)

where τ and τ̄ are scaling coefficients, and φn and φ̄n are exponential
coefficients for different turning types.

The data shows that traffic accidents are more likely to occur at
road intersections, with differing levels of risk for left turns, right
turns, and straight movements [12, 19].

Enβ(ra→b) =


Elβ(ra→b), if turning left, n = 1,

Erβ(ra→b), if turning right, n = 2,

Esβ(ra→b), if going straight, n = 3.

(8)

Varnβ(ra→b) =


Varlβ(ra→b), if turning left, n = 1,

Varrβ(ra→b), if turning right, n = 2,

Varsβ(ra→b), if going straight, n = 3.

(9)

For the safety cost related to AV adoption, the performance of
AVs and HVs at intersections differs significantly, and the safety risk
changes with the penetration rate of AVs. Additionally, it has been
demonstrated that the impact of AV adoption rates on enhancing
system efficiency and reducing risk costs is not always linear or
straightforward; instead, it presents relatively complex trends and
unclear. therefore, we assume the relationship between the mean
of the safety cost related to AV adoption Eβ(ra→b) is shown in
Equation. 10, 11, and Fig.2b.

Eβ(ra→b) = a

(
xAV

xAV + xHV
− b

)2

+ c (10)

Varβ(ra→b) = a′
(

xAV
xAV + xHV

− b′
)2

+ c′ (11)

Furthermore, it satisfies:

EMix
β (ra→b) > EHV

β (ra→b) > EAV
β (ra→b) (12)

The variance is determined using second-order moments. Based
on this, the CRC at intersections is assumed to follow a specific
distribution.

E(ra→b) = Eα(ra→b) · Eβ(ra→b), (13)

Var(ra→b) = Eα(r2a→b) · Eβ(r2a→b)

− (Eα(ra→b) · Eβ(ra→b))
2 (14)

The calculation of second-order moments is :

Eα(r2a→b) = Varα(ra→b) + (Eα(ra→b))
2, (15)

Eβ(r2a→b) = Varβ(ra→b) + (Eβ(ra→b))
2. (16)



2) Effective Crash Risk Cost: The cost threshold at a given
confidence level ρ, ensuring a safe budget for travel, provides a
measure of route safety reliability. It helps travelers choose routes
that meet their safety requirements.

Rp(ρ) = min{R | Pr(rp ≤ R) ≥ ρ} (17)

= E(rp) + λp(ρ)

where Rp(ρ) is the required Effective Crash Risk Cost (ECRC) of
route p at confidence level ρ, and λp(ρ) is the added CRC margin
of route p at confidence level ρ, which can be seen as the safety
premium paid to ensure a safe trip.

3) Mean-excess Crash Risk Cost: The conditional expected value
of CRC exceeding the ECRC comprehensively considers both safety
reliability and unreliability. It reflects the uncertainty in route safety
more comprehensively, especially in extreme high-risk scenarios, and
avoids underestimating risk by relying solely on the ECRC.

Rp(ρ) = E(rp | rp ≥ Rp(ρ))

= Rp(ρ) + E(rp −Rp(ρ) | rp > Rp(ρ))

= E(rp) + zq ·
√

Var(rp) +
√

Var(rp) ·
ϕ(zq)

1− Φ(zq)
(18)

where Rp(ρ) is the Mean-excess Crash Risk Cost (MCRC) of
route p at confidence level ρ, and E(rp − Rp(ρ) | rp > Rp(ρ)) is
the conditional expectation of the excess part.

C. Traffic assignment models

1) Generalized Travel Cost: Generalized Travel Cost includes
travel time cost, calculated using the BPR function, and safety cost:

cdp = tdp + θd ·Rp(ρ), ∀a ∈ A, ∀d ∈ D (19)

tdp =
∑
a∈A

taδ
p
a (20)

ta = t0

[
1 + α

(
xAV + xHV

ca

)β]
(21)

where tda is the travel time cost, Rp is the MCRC for path p, and
θd is the conversion factor between route travel safety cost and time
cost for class d travelers.

2) Travel Behavior Scenario: Traditional traffic assignment as-
sumes homogeneity among users in the network. Hence, classical
traffic assignment models typically consider only Wardrop User
Equilibrium (UE) and System Optimality (SO) scenarios. However,
in real-world networks, travel behavior varies among different user
groups. For autonomous vehicles (AVs), their travel behavior can be
modeled either as individual vehicles or as a coordinated fleet. In
mixed traffic flows consisting of human-driven vehicles (HVs) and
AVs, treating AVs as a fleet introduces distinct mixed travel behavior
patterns.

In this study, HVs are assumed to follow the logit-based Stochastic
User Equilibrium (SUE) principle. For AVs, three travel behavior
scenarios are considered: noitemsep, topsep=0pt

• Scenario 1 (h = 1): Selfish user behavior, where AVs follow
the User Equilibrium (UE) principle, minimizing the travel time
for individual vehicles.

• Scenario 2 (h = 2): Private monopolist behavior, where AVs
minimize the total travel time of the autonomous vehicle fleet.

• Scenario 3 (h = 3): Social planner behavior, where AVs mini-
mize the total travel time of both human-driven and autonomous
vehicle fleets.

Based on the above formulations, the variational inequality (VI) for
the mixed traffic equilibrium model under the three scenarios (h = 1,
h = 2, h = 3) is expressed as:

∑
w∈W

∑
p∈Pw

C̃wHV,p(f
∗
HV , f

∗
AV ) · (fwHV,p − fw∗

HV,p)

+
∑
w∈W

∑
p∈Pw

C̃h,wAV,p(f
∗
HV , f

∗
AV ) · (fwAV,p − fw∗

AV,p) ≥ 0 (22)

subject to:

s.t.
∑
p∈Pw

fwHV ,p = qwHV , ∀w ∈ W, (23)∑
p∈Pw

fwAV ,p = qwAV , ∀w ∈ W, (24)

fwHV ,p ≥ 0, ∀p ∈ Pw, w ∈ W, (25)

fwAV ,p ≥ 0, ∀p ∈ Pw, w ∈ W. (26)

According to the different travel objectives, the route costs for HVs
and AVs under various scenarios are defined as follows:

C̃wHV,p(f
∗
HV , f

∗
AV )

=
∑
a∈A

caδ
w
a,p +

∑
a→b∈A−

ca→bδ
w
a→b,p +

1

θ
ln

fwHV,p
qwHV

(27)

C̃wAV,p(f
∗
HV , f

∗
AV )

=



∑
a∈A caδ

w
a,p +

∑
a→b∈A− ca→bδ

w
a→b,p, h = 1,∑

a∈A caδ
w
a,p +

∑
a→b∈A− ca→bδ

w
a→b,p

+ ∂ca
∂xAV,a

· x∗
AV,aδ

w
a,p +

∂ca→b
∂xAV,a→b

· x∗
AV,a→bδ

w
a→b,p, h = 2,∑

a∈A caδ
w
a,p +

∑
a→b∈A− ca→bδ

w
a→b,p

+ ∂ca
∂xAV,a

· (x∗
AV,a + x∗

HV,a)δ
w
a,p

+ ∂ca→b
∂xAV,a→b

· (x∗
AV,a→b + x∗

HV,a→b)δ
w
a→b,p, h = 3.

(28)

where δwa,p and δwa→b,p are indicator variables that denote whether
link a or turning link a→ b is part of route p for OD pair w.

III. CONTRIBUTIONS

The key contributions of this paper are:
(i) Developing a comprehensive mixed traffic equilibrium model

that explicitly incorporates the behavior and interactions between
HVs and AVs, considering both efficiency and safety at road links
and intersections.

(ii) Proposing a dynamic AV route adaptation mechanism that
accounts for varying levels of AV market penetration and their
influence on traffic patterns.

(iii) Validating the proposed models through numerical experiments
on realistic network scenarios, including the Nguyen-Dupuis network
network, to assess the impact of AV adoption on system-wide
performance.



IV. COMPUTATIONAL RESULTS

In Fig. 3a, which depicts Selfish User Equilibrium (UE) behavior,
the total system cost initially hovers around 146,000 at zero AV
penetration, exhibits a slight uptick at low levels of AV adoption, and
then steadily declines to approximately 135,000 as AV penetration
reaches 100%. This transient increase at low AV penetration rates may
reflect temporary inefficiencies associated with mixed fleets under
purely self-interested routing decisions.

By contrast, Fig. 3b, representing Private Monopolist behavior
(fleet-based SO), shows a more consistent downward trend in system
cost as the AV share increases, though the total cost remains higher
than in the fully optimized scenario. Here, a single private operator
coordinates fleet-based decisions, reducing some inefficiencies com-
pared to purely selfish routing, yet still prioritizing the operator’s
objectives over global cost minimization.

Finally, Fig. 3c, illustrating Social Planner (SO) behavior, demon-
strates the most pronounced cost reduction: system cost falls from
around 146,000 at zero AV adoption to approximately 130,000 at
full penetration. This improvement reflects the planner’s ability to
assign routes to minimize overall network cost, rather than focusing
on individual or monopolistic objectives.

(a) Selfish user behavior (b) Private monopolist behavio

(c) Social planner behavior

Fig. 3. Comparison of three traffic scenarios: h = 1, h = 2, and h = 3.
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1 Introduction

Interaction between autonomous vehicles and human drivers is a prolific research area that has many in-
teresting aspects such as microscopic driving behaviour [6, 7]. The interaction between human drivers and
coordinated fleets of autonomous vehicles in future transportation systems, however, seems to be under-
studied. The research related to adoption of AVs, namely, has so far focused mostly on individual factors
determining CAV uptake and discussing static levels of adoption in relation to automation level (see e.g.
[2, 8]) or different routing outcomes [14, 10]. The dynamic market evolution in systems with mature CAV
as a service offer where drivers are free to switch between driving/routing independently and subscribing to
a coordinated fleet of autonomously driving and routing vehicles remain unexplored.

Importantly, the dynamics of human-only (no CAVs) systems can already exhibit complex long run
phenomena such as unstable or multiple attractors with research in this direction ranging from consideration
of simple differential dynamical systems to full-scale agent-based or aggregated stochastic processes, e.g.
[11, 9, 13, 5, 12]. Adding autonomous vehicles into such a system adds a further layer of complexity: the
autonomous agents may behave selfishly, cooperatively or semi-cooperatively; they may interact differently
with human vehicles than they do with other autonomous vehicles; and they may be ‘tuned’ to influence
the system evolution in different ways, whether for the benefit or not of the different groups of agents.

Studying complex interactions such as HDV-CAV dynamics, one usually accounts for certain aspects
while aggregating the others. In [4], e.g., the authors investigated microscopic driving conflict interactions
and made long-term predictions based on the evolution of the system using (evolutionary) game theory.
Nevertheless, a comprehensive theory of adoption of CAVs allowing for forecasting long term properties in
mature markets with CAVs treated as equal road-users has been lacking. In this contribution we fill this
gap, proposing dynamic behavioral models of CAV uptake derived from factors such as perceived efficiency
of routing and studying their properties such as equilibria/stable states, long-term convergence etc. We use
both theoretical methods based on dynamical systems, game theory, statistics etc. and experimental methods
using agent-based simulations as well as fleet strategy execution based on optimization or reinforcement
learning. We propose notions of equilibria in this bi-level (route choice and fleet-HDV switching) setting
and discuss their existence, uniqueness and stability in aggregated as well as disaggregatged individual-based
settings. An exemplary conclusion is that anti-social routing strategies adopted by fleet operators may turn
out to be the most evolutionary successful, leading to maximization of long-term market share.

2 Setup

We consider traffic networks (ranging from a single OD pair to complex topologies) which are initially
populated by human drivers only. Considering day-to-day route choice dynamics, we identify stable states
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(theoretically or by means of agent-based simulations) and then let an initial share of CAVs replace human
drivers. From this moment on, each driver, whether in a coordinated fleet (CAV) or routing independently
(HDV), has the freedom to switch from HDV to CAV or revert to being an independent driver. Simultane-
ously, HDVs choose routes every day, while CAVs follow the routes assigned by the fleet operator. We let
the system evolve (e.g. for 200 days in simulations), studying it convergence to stable states.

Heterogenous human drivers choose routes according to standard behavioural models based on expected
utility (perceived travel time). CAV fleet operators adopt certain behavioural strategies such as (but not
limited to) selfish - optimizing collective fleet travel time, social - optimizing the total travel time in the
system, malicious - aiming to maximize the travel time of human drivers, disruptive - aiming to maximize
human drivers’ travel time at bounded own cost and altruistic - aiming to minimize human drivers’ travel
time (compare [3] for adversarial network response scenario).

In this dynamic setting drivers not only learn and make everyday route choices (compare [10, 1] for
previous research) but also consider switching between HDV and CAV, the latter occuring potentially on
a different time scale and/or incurring some cost or being harder to execute, depending on the scenario
(see Results). We propose models of this switching behaviour and study the equilibrium and long-term
properties of this dynamic system.

3 Results

Sample switching model and simulation results
Here we present the simulation results of a sample model in a simplified static setting, see [10], leaving
the full theoretical and simulation discussion of more detailed models to the full paper. In the considered
model there is one OD pair with two available routes A and B and travel times expressed by BPR functions
tA = 5min ∗

(
1 +

( qA
500

)2
)

and tB = 15min ∗
(
1 +

( qB
800

)2
)
, where qA, qB are the number of vehicles choosing

A and B on a given day and the total demand equals 1000. Heterogenous HDVs make decisions based on
learning from experienced travel times and maximization of utility. In contrast, being part of CAV fleet, the
vehicles choose the route prescribed by the fleet operator which minimizes a collective objective function
expressed as a combination of collective fleet travel times and HDV travel times:

Φ = λCAV tCAV + λHDV tHDV ,

where λCAV , λHDV prescribe the collective goal. E.g. collective selfish routing is obtained for λCAV = 1
and λHDV = 0 and malicious collective CAV routing occurs for λCAV = 0 and λHDV = −1.

The sample model of HDV↔CAV switching assumes that the expected disutilities (for every agent i) of
using an HDV or CAV are expressed by formulas:

DHDV = min
r∈{A,B}

−Ur(i) = min
r∈{A,B}

(Tr(i) + ϵr(i))

DCAV = κ
qCAV

A ∗ (−UA(i)) + qCAV
B ∗ (−UB(i))

qCAV
A + qCAV

B

where Ur(i) = −(Tr(i) + ϵr(i)) is the utility of route r to driver i, where Tr(i) is the expected (obtained by
learning from experience) travel time on route r and ϵr(i) accounts for taste preferences between the routes
based on other factors (different for different drivers but fixed in time). DCAV is the expected disutility (i.e.
expected perceived travel time) of agent i belonging to the fleet, scaled by a discount factor κ. Typically,
κ ≤ 1, which expresses the gain in perceived travel time due to factors such as no need to drive etc., however
we consider also κ > 1, which could be relevant for agents preferring driving and routing independently.
qCAV

A , qCAV
B are the number of agents routed via A and B, respectively on a given day. We assume that

switching HDV ↔ CAV incurs some cost and so an HDV (CAV) considers switching on a given day only
if DHDV − DCAV > θ (< −θ), for some threshold θ, which we assume to be equal 1 min. The probability
of switching is given by

pswitch = 2
π

arctan(|DHDV − DCAV |/(10 ∗ θ)).
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If, for instance, DHDV = DCAV + 10 min an HDV’s probability of switching would be pswitch = 0.5 and a
driver using a CAV would not consider switching at all.

This simplified model has non-trivial consequences. Fig. 1 shows that the antisocial malicious strategy
of fleet operators and its soft version ’Disruptive’ seem to be the most successful evolutionarily which is an
important hint for policy-makers.

Figure 1: Average final CAV share as a function of initial CAV share (on the day of fleet introduction)
for various fleet discount factors and fleet behaviours. Low discount factors imply, not surprisingly, high
eventual CAV uptake. Discount factor of 1.0 (no discount) results in limited eventual uptake of 10 − 20%
for most initial CAV shares. The dependence on Initial CAV share is rather weak. 0.9n stands for discount
factors sampled independently for each agent from the normal distribution N(0.9, (0.2)2) while for ’bim’
from the bimodal distribution 0.5N(0.5, (0.1)2)+0.5N(1.5, (0.1)2), with two peaks at 0.5 and 1.5. Malicious
and disruptive strategies are most successful across a range of parameters yielding highest final CAV shares.

Fleet-human dynamic equilibrium and strong equilibrium
At the theoretical level we propose several notions of equilibria such as dynamic fleet-human equilibrium
and strong fleet-human equilibirum. As the dynamics occur at two interdependent levels (route choice
and switching HDV ↔ CAV), with different equilibration (if any) rates, we can consider various equilibria.
We introduce two of them below. The first one encompasses only equilibration of switching dynamics with
route-choice dynamics possibly still taking place and can be conceived as a sort of self-confirming equilibrium.

Definition 1. A mixed traffic system is in dynamic fleet-human equilibrium if no driver has an
incentive to switch from HDV to CAV or vice versa.

Note that this definition does not imply that every driver’s route choice pattern is constant (i.e. selecting
the same route every day or having constant probabilities of choosing different alternatives). In fact, the
route choice probabilities of every individual agent can vary wildly as long as they are guaranteed to never
make this agent switch to CAV if it is HDV or vice versa. For instance, a system composed initially
(after introduction of CAVs) of 20% CAV who, no matter what, never want to revert to HDV and 80%
HDVs who are completely opposed to switching to CAV is in dynamic fleet-human equilibrium even though
the dynamics at the level of route choice may be ongoing and be perhaps very complex resulting in e.g.
oscillations or final equilibration. A stronger notion is the two-tiered nested equilibrium introduced below.

Definition 2. A mixed traffic system is in strong fleet-human equilibrium if no driver has an incentive
to switch from HDV to CAV or vice versa and the system composed of atomic individual (or infinitesimal)
human driver players and a group fleet player is in Nash (Wardrop) or similar (ϵ-Nash etc.) equilibrium at
the level of route choice.

The equilibration at the route choice level only with some agents still considering switching (and perhaps
taking many days before they switch) precludes a strong fleet-human equilibrium. On the other hand, e.g.
a system in (stochastic) user equilibrium with human drivers only and no option to switch to CAV is in
strong equilibrium. Finally, the system considered above in dynamic fleet-human equilibrium may not be in
strong fleet-human equilibrium. However, it may eventually converge to a strong fleet-human equilibrium
once the route choices equilibrate.
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Let us stress that the precise definitions of the fleet-human equilibria depend on the level of aggregation
of drivers we are considering. The detailed properties of these and related equilibria are discussed in detail
in the full version of the paper. Here we only note that the properties of the equilibria introduced above
heavily depend on human learning and route-choice model and fleet strategy.

4 Discussion

Future composition of urban traffic systems and interactions in mixed autonomous vehicle - human driver
context remain largely unexplored. This paper contributes to shedding some light on possible evolution of
dynamic CAV uptake based on studying certain factors such as travel time-based utilities and aggregating
other unaccounted for factors. Even though further research seems necessary to make the predictions even
more reliable, this paper contributes to understanding the collective routing phenomena and urges caution
in deploying CAV fleets which might e.g. obtain unfair market advantage by applying antisocial routing
policies.
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1. Introduction  
 

1.1. The impacts of motor traffic in towns  

 

The distribution of motor vehicle traffic flows and queues both have a very important impact on the 

effective use of urban road-space. For example:  

(i) active travel is much more likely to thrive where motor vehicle flows and queues are 

small,  

(ii) public transport is likely to run more efficiently where motor vehicle flows and queues 

are small,  

(iii) enjoying the view of inspiring architecture is often much enhanced by reductions in the 

visual intrusion of motor vehicles, and 

(iv) the use of streets for play and other social interactions becomes possible when traffic 

flows and queues are small or very small. 

 

Traffic signals may be regarded as taps controlling both flows and queues. It follows that the interaction 

between traffic signal timings and motor traffic flows and queues on a road network is key to many 

important aspects of urban traffic. For example, if specific targets for flows and queues are agreed then 

signal timings may be used to help achieve these specified flow and queue targets.  

 

Since traffic signals may be regarded as taps, there is the option of reducing flow out of a link by 

reducing the green-time at the link exit. This will usually reduce flows and queues downstream and this 

is the standard way of looking at gating: as an upstream control which affects downstream conditions. 

There are very many papers on gating (see Quinn (1992) for a substantial informative review). Most 

focus on upstream gating. 

 

Our gating proposal here looks instead at the upstream effects. These upstream effects arise because 

reduced green-times at the link i exit increase delays and divert traffic flows away from link i and, 

usually, at least some upstream links. This gating may be thought of as “downstream gating”, affecting 

upstream queues and flows.  

 

Of course any gating action will in practice probably have both upstream and downstream effects. 

 

The interaction between adaptive or responsive traffic signal control systems and the distribution of 

flows and queues on a network is very important; yet this interaction has received little substantial 

study. This paper considers elements of this interaction. The paper proposes a new sensitive distributed 

gating strategy for carefully and efficiently reducing flows and queues at specific locations, both 

upstream and downstream. There is substantial opportunity for development of the basic gating strategy 

introduced in this paper. 

 

  

https://www.bing.com/ck/a?!&&p=7852a2ce174ad80f2033e038a55132b1b8370e0783e1c7e47d9aa1f42090be99JmltdHM9MTczMjkyNDgwMA&ptn=3&ver=2&hsh=4&fclid=0e924668-8eb4-62ad-2c5f-55608fb46306&u=a1L21hcHM_Jm1lcGk9MTI3fn5Vbmtub3dufkFkZHJlc3NfTGluayZ0eT0xOCZxPUluc3RpdHV0ZSUyMEZvciUyMFRyYW5zcG9ydCUyMFN0dWRpZXMlMjAlMjhpdHMlMjkmc3M9eXBpZC5ZTjEwMjl4OTU1MzYxNTQ4MDY2ODI0ODcxNiZwcG9pcz01My44MDY5MDM4MzkxMTEzM18tMS41NDk3Njc5NzEwMzg4MTg0X0luc3RpdHV0ZSUyMEZvciUyMFRyYW5zcG9ydCUyMFN0dWRpZXMlMjAlMjhpdHMlMjlfWU4xMDI5eDk1NTM2MTU0ODA2NjgyNDg3MTZ-JmNwPTUzLjgwNjkwNH4tMS41NDk3Njgmdj0yJnNWPTEmRk9STT1NUFNSUEw&ntb=1


2 

 

1.2. The interaction between traffic signal control and flows and queues of motor traffic  

 

Allsop (1974) and Beckmann (1956) suggested that traffic signal-settings should take account of 

drivers’ route choices; so as to beneficially affect the distribution of motor vehicle traffic flows on an 

urban road network. This paper will be concerned with responsive or adaptive signal controls where the 

green-times are responsive to traffic flows and queues. The paper addresses the question:  

How should green-times respond to flows and queues?  

The paper makes several suggestions in response to this question.  

 

The responsive control policies developed in this paper are carefully designed to operate a sensitive and 

responsive local gating strategy (holding some traffic back) aiming to reduce queues in selected 

locations and overall. The holding back responsive control policies considered are all, under certain 

conditions, still capacity-maximising; because they build directly on the P0 control policy which is 

capacity-maximising.  

 

1.2.1. Studies of the interaction between traffic signal control and flows and queues   

 

Smith (1979a, b, c)  

(i) proposed the local P0 traffic signal control policy and  

(ii) proved that, under certain conditions, this policy maximises overall network travel 

capacity.  

 

The new control strategies are variations on this basic P0 control policy, building on control policies Ph 

introduced in Smith et al (2019a). These variations of P0 are designed to allow more inputs from policy-

makers, who may wish to reduce flows and queues in certain areas or on certain important road links. 

 

Bentley and Lambe (1980) created a model embracing traffic assignment (and so vehicle routeing and 

vehicle flows) and traffic control. Smith and van Vuren (1993) compare IOA (iterative optimisation 

assignment) using the P0 control policy and the equisaturation policy.  

 

The joint dynamics of day-to-day route choice and adaptive signal control under real-time information 

has been considered by Hu and Mahmassani (1997). Mounce (2009) proves the existence of equilibrium 

in a continuous dynamic queueing model with responsive signal control. Cantarella (2010) presented a 

formal definition of the combined day-to-day signal control and traffic assignment problem based on a 

discrete time, deterministic process model. He proved fixed-point stability results. Cantarella et al. 

(2012) showed how equilibrium stability conditions can be embedded as a constraint in a day-to-day 

signal setting–route choice framework.  

 

Varaiya (2013) presents a different view of responsive traffic control, assuming that route choices are 

fixed; Varaiya suggests a control called MaxPressure.   

 

Meneguzzer (1996, 1997, 2012) gives an interesting review and shows that the frequency of signal 

updating may significantly affect the duration of the day-to-day dynamic process needed to achieve a 

network flow–control equilibrium. Yang and Yagar (1995) study assignment and control on saturated 

networks. Bie and Lo (2010) study the stability and attraction domains of traffic equilibria in a day-to 

day dynamical system. Xiao and Lo (2015) investigated the behavior of a joint route choice–signal 

control dynamical system.  
 

More recently, He et al (2022) present a discrete day-to-day signal retiming problem for fine-tuning the 

green splits in a single-destination traffic network to mitigate the congestion induced by travelers’ day-

to-day adaptation to a new signal plan. Numerical examples demonstrate that the proposed signal 

retiming scheme can reduce the total system travel time over the traffic equilibration period.  

 

Meneguzzer (2024) considers adaptive traffic signal control to promote the efficient use of road 

intersections, but comments that “the reaction of drivers to repeatedly updated signal settings and the 
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ensuing route choice dynamics may trigger the emergence of various kinds of network instability”. 

Meneguzzer suggests a Logit form signal control policy (somewhat similar to a policy suggested by Le 

et al (2015)) to better protect the system from instabilities which may arise with other responsive traffic 

signal control strategies. 

 

Satsukawa et al (submitted) consider a static traffic assignment problem with the P0 control policy in a 

simple signal-controlled network. The equilibrium states consistent with P0 are calculated for changing 

demand levels, from unsaturated to near saturated; to investigate whether uniqueness holds for the 

different traffic demand levels. Stability of the equilibria are studied using a graphical approach. The 

paper demonstrates (i) the occurrence of multiple equilibria with different total travel times at certain 

moderate traffic demand levels and (ii) the existence of a hysteresis loop, where different stable 

equilibria with different total travel times emerge when traffic demand increases and then decreases.  

 

1.3. New sensitive distributed gating strategies to reduce flows and queues in sensitive locations 

 

This paper states new sensitive distributed [green-split plus gating] strategies which aim to reduce flows 

and queues in urban road networks, especially in sensitive locations. 

 

Gating strategies are usually designed to reduce queues and flows downstream; the gating is upstream 

of the beneficial effects. This paper shows how gating strategies may also be used to reduce queues and 

flows upstream.  

 

Often traffic control systems are judged by measures such as “total vehicle travel time” or “total vehicle 

delay time” or “total number of vehicle stops” or “total person travel time” or “total person delay time” 

or “total network vehicle travel capacity” or “total network person travel capacity”. Then these measures 

may be used to find control systems which reduce or even minimise “total vehicle travel time” etc. 

 

These standard measures do not consider especially bad impacts in especially important places. So it 

is natural to consider other measures such as “vehicle queues on link i” or “the number of vehicles on 

link i” or “vehicle flows on link i” or “vehicle stops on link i”. These may be considered for all links i 

separately or added together over all links i in (say) the city centre or in a residential district. These link 

i measures may also be multiplied by (say) estimates of the number of pedestrians on the link. These 

measures may be used to find control systems which reduce pollution or accident-risk to pedestrians; 

often by encourage motor traffic to switch to longer but less pedestrian-populated routes.   

 

This paper proposes new responsive control strategies which maximise network capacity and also 

reduce “vehicle queues on link i” or “the number of vehicles on link i” or “vehicle flows on link i” or 

“vehicle stops on link i”; or sums of such measures. The proposed new control strategies are all 

developments of P0; these new developments add careful sensitive gating strategies to extensions of P0, 

and the paper demonstrates that the new strategies do still maximise network capacity and reduce some 

of the measures listed above. 

 

The paper also proves some stability results concerning some of these new (P0-augmented) responsive 

traffic signal control policies and certain dynamic day-to-day models of route choice; substantially 

developing some of the stability ideas already published in Liu et al. (2015).  

 

1.4. A simple illustrative example; showing what we mean by “gating” and how traffic queues 

on a network may be reduced by using gating  

 

Figure 1 illustrates a simple network with one traffic signal at a bottleneck at node n2. This may 

represent a village with a high pedestrian flow on link 1 and perhaps on link 4. Let  

T = steady flow from the origin to the destination = flow on link 1 plus flow on link 3,  

g1 = link 1 green-time, 0 ≤ g1 ≤ 1. 

For i = 1, 3, 4, 

si = saturation flow of link i,  
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ci = link i free-flow travel time, 

b1  = bottleneck delay at the exit of link 1 = travel time along link 1 – link 1 free-flow travel time.  

Suppose that  

s1 < T < s3 and c1 + c4 < c3. 

The equilibrium queue on link 1 causes a queueing time which at equilibrium equalises the two route 

travel times c1 + b1 + c4 seconds and c3 seconds. 

 
Figure 1. No gating. Link 1 green-time proportion g1 = 1. 

 

Figure 2 illustrates the same network with a link 1 green-time proportion reduced from 1 to ½. This is 

the simplest example of gating where the sum of green-times < 1 rather than = 1.  

 

The queue on link 1 again causes a queueing time which at equilibrium equalises the travel times over 

the two routes.  But by virtue of the gating; reducing the green-time g1 from 1 to ½; this queue is now 

more than halved. See appendix A in the full paper for a detailed justification of this statement. It is 

anyway clear that reducing the link 1 green-time from 1 to ½ means that the link 1 queue volume needed 

to balance the network is significantly reduced.  

 
Figure 2. With gating: Link 1 green-time proportion g1 = ½ < 1. Gating ensures that the queue is more 

than halved. See appendix A in the full paper for a detailed justification of this statement. 

 

Here gating substantially reduces link 1 equilibrium queues. The gating strategy here also substantially 

reduces traffic flows along links 1 and 4 and substantially increases flow along link 3.  

 

2. Stability of day-to-day signal-setting / traffic routeing using signal stages, anti-stages 

and red-times.  

 
2.1. Signal stages and anti-stages.  
 

We consider, in a day-to-day context, the dynamics of responsive signal control and routeing on a 

general network. For any signal stage S at a junction there corresponds an anti-stage AS at the same 

junction. Anti-stage AS is the set of links at the same junction shown red when stage S is shown green.  
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 2.2. Central variables. 

 

Suppose now that in a general network with N routes, M signal stages (and so M antistages) and n links:  

 si = saturation flow at the link i exit,                   

    X = (X1, X2, . . . , Xa, . . . , XN) is the N-vector of all route flows X1, X2, . . . , XN , 

 R = (R1, R2, . . . , Ra, . . . , RM) is the M-vector of all anti-stage red-times R1, R2, . . . , RM , 

 xi = the sum of the route flows over all routes which contain link i (for i = 1, 2, 3, . . . , n),   

 ri = the sum of the anti-stage red-times over all anti-stages which contain link i (for i = 1, 2, 3, . . . , n), 

thus: 

xi = ∑ {u; route u contains link i} Xu and ri = ∑ {u: anti-stage u contains link i} Ru  

(and therefore ri = 0 if link i is not signalised), 

  x = (x1, x2, . . . , xn) is the n-vector of link flows x1, x2, . . . , xn ,  

 r = (r1, r2, . . . , rn) is the n-vector of red-times r1, r2, . . . , rn  (where ri = 0 if link i is not signalised). 

 ci(∙) is a new non-decreasing cost function of only xi (for i = 1, 2, 3, . . . n),   

 bi represents the vertical link i delay due to exiting the link (this is the whole link travel time minus 

ci(∙)),  

    b = (b1, b2, . . . , bn) is the n-vector of extra (beyond ci(∙)) added bottleneck delays bi at the exit of link i, 

and 

the whole link i travel time = ci(xi) + bi. 

  

 2.3. Delay functions involving both flow and red-time; route-costs and anti-stage costs. 

  

 In this paper we utilise link delay functions which involve link red-times as well as link flows. Given 

link i, we now let:    

  fi  = a particular fixed but arbitrary non-decreasing non-negative function  

      defined on at least the interval [0, si) = {xi; 0 ≤ xi < si}.  

     

 The functions fi will eventually be very carefully chosen by the signal controller but for now  

   these fi  are fixed but arbitrary non-decreasing non-negative functions  

 defined on at least the set of feasible link flows = [0, si) = {xi; 0 ≤ xi < si}. We now make a major 

assumption. 

 

 MAJOR ASSUMPTION:  

Given the fixed non-decreasing non-negative functions fi, we assume that for each link i:  

  the link i (vertical) bottleneck delay bi = fi (xi + siri). 

We then, for each link i, define  

 the link i travel cost = the link travel time = ci(xi) + bi = ci(xi) + fi (xi + siri). 

 

In order to design a suitable control policy we define the link i red-time cost as follows: 

  the link i red-time cost = sibi = sifi (xi + siri). 

 

Bearing in mind that  

  xi = ∑ {u; link i belongs to route u} Xu and ri = ∑ {u; link i belongs to anti-stage u} Ru,  

we now define the N route travel costs Cu; which will be travel times here; and the M anti-stage red-

time-costs Au as follows: 

 Cu(X, R)  =  ∑ {i; link i belongs to route u} [ci(xi) + fi (xi + siri)],   

 Au(X, R) = ∑ {i; link i belongs to anti-stage u} sibi  = ∑ {i; link i belongs to anti--stage u} sifi (xi + siri).   

Also we put 

C(X, R) = [C1(X, R), C2(X, R), . . . , CN(X, R)] and  

A(X, R) = [A1(X, R), A2(X, R), . . . , AM(X, R)].  

We assume here that the Cu(X, R) are all determined by the route flow vector and the anti-stage red-

time vector and so are not directly under our control; although we control R we do not directly control 
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X. On the other hand we will consider some simple variations on the definitions of the Au(X, R); this 

will allow a variety of new control policies to arise. 

 

Throughout this paper the current or today’s route flow vector X and cost vector C(X, R) determine 

future or tomorrow’s route flows; these are obtained from today’s route-flow vector X by swapping 

route-flow from more to less costly routes following the proportional adjustment process, or PAP, see 

Smith (1984). 

 

Also the current or today’s anti-stage red-time vector R and anti-stage cost vector A(X, R) determine 

future or tomorrow’s anti-stage red-times which are obtained from today’s red-time vector R by 

swapping red-time from more to less costly anti-stages following a method similar to PAP. 

 

In this paper all route-flow swaps and anti-stage red-time swaps will take place from one day to the 

next, or from today to tomorrow. 

 

    2.4. Start points and ultimate objectives. 

   

Start point. There may also be a specified start point (X0, R0). This point must in this paper be feasible:  

X0 must satisfy a given demand,  

R0 must also satisfy given constraints and also  

(X0, R0) must be such that x0i + sir0i ≤ si for all i.  

In this paper we think that today’s (route-flow, red-time) pair is feasible, and this pair might also be 

thought of as a start point. 

 

Ultimate objectives. The ultimate objectives of the control policies here are  

(i) to ensure that the dynamical adjustments remain feasible, hence our stability results 

and  

(ii) to reduce queueing as illustrated in section 1.4 and section 6. 

  

3. P0 Responsive traffic control and dynamic route choice with arbitrary fi 

 

3.1. P0 Responsive traffic control with the functions fi 

 

Given the fixed but arbitrary functions  fi , our major assumption (stated above) is that  

 the real link i bottleneck cost = link i bottleneck delay time = bi = fi (xi + siri) seconds. 

This delay time or delay cost (in seconds) is felt by the car driver.  

 

We also define, for each link i,  

the link i red-time cost = sibi = si fi(xi + siri).  

This cost is to be felt or measured by the signal controller.  

 

To design the P0 signal control dynamic and the day-to-day re-routeing dynamic we utilise  

(a) the major initial assumption,  

(b) the route cost vector C(X, R) = [C1(X, R), C2(X, R), . . . , CN(X, R)] and  

(c) the anti-stage red-time cost vector A(X, R) = [A1(X, R), A2(X, R), . . . , AM(X, R)].  

These are all defined in section 2.3 above.  

 
At each junction: 

  the policy P0 swaps red-time from more red-time costly to less red-time costly anti-stages. 

A more precise, proportional, version of this rather general dynamical control policy is as follows. 
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Definition 1. The simplest dynamic signal timing proportional P0 adjustment process, PP0AP. 
Given a small k > 0, for all ordered pairs of anti-stages, (anti-stage a, anti-stage e), at the same junction:  

  the proportional P0 adjustment process (PP0AP): 

  swaps red time k[Ra(Aa – Ae)]+ from anti-stage a to anti-stage e.    (1)  

   

P0 is built into the red-time adjustment process (PP0AP) or (1) using the sibi in the definition of anti-

stage red-time-costs Aa in section 2. Swapping rule (1) is similar to the route flow adjustment PAP in 

Smith (1984) but uses red-times reacting to red-cost differences instead of route-flows reacting to route-

cost differences.  

 

See section 2.4 for two ultimate objectives. 

 

3.2. Dynamic route choice with the fixed but arbitrary functions fi 

 

Definition 2. Probably the simplest dynamic proportional routeing adjustment process, PAP, is: 

Given a small k > 0, for all ordered pairs of routes, (route i, route j), joining the same OD pair: 

      the proportional routeing adjustment process (PAP) 

  swaps route flow kXi[Ci – Cj]+ from route i  to route j.                    (2) 

See Smith (1984). 

 
4. For fixed demand, small k and arbitrary non-decreasing fi, PAP with PP0AP is stable  

 

4.1. For arbitrary non-decreasing fi, [C(X, R), A(X, R)] is a gradient. 

 

Every link in our network has saturation flow si, link flow xi, red-time ri and an arbitrary non-decreasing 

f i (xi + siri). For each link define the Lyapunov function V as follows. First, for each link i 

𝑉𝑖(𝑥𝑖, 𝑟𝑖) = ∫ 𝑐𝑖(𝑢)𝑑𝑢
𝑥𝑖

0

+ ∫ 𝑓𝑖(𝑢)𝑑𝑢
𝑥𝑖+𝑠𝑖𝑟𝑖

0

 

and then we put 

                                                                      𝑉(𝐱, 𝐫) = ∑  𝑉𝑖(𝑥𝑖, 𝑟𝑖)

𝑛

𝑖=1

.                                                            (3) 

 

Then  

 𝜕𝑉(𝐱, 𝐫)/𝜕𝑥𝑖  = 𝜕 𝑉𝑖(𝑥𝑖, 𝑟𝑖)/𝜕𝑥𝑖 = 𝑐𝑖(𝑥𝑖) +  𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖) 

and 

𝜕𝑉(𝐱, 𝐫)/𝜕𝑟𝑖 = 𝜕𝑉𝑖(𝑥𝑖, 𝑟𝑖)/𝜕𝑟𝑖 = 𝑠𝑖𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖).   
So  

(𝑐𝑖(𝑥𝑖) + 𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖), 𝑠𝑖𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖)) is the gradient of 𝑉𝑖 

and  

           (𝐜(𝐱) + 𝐟(𝐱 + 𝐬𝐫), 𝐬𝐟(𝐱 + 𝐬𝐫)) is the gradient of 𝑉(𝐱, 𝐫) = ∑  𝑉𝑖(𝑥𝑖, 𝑟𝑖)

𝑛

𝑖=1

.                               (4) 

Using standard arguments, it now follows that [C(X, R), A(X, R)] is a gradient. 

 

4.2. For arbitrary non-decreasing fi, (control, routeing) adjustment (1) with (2) is stable;     

       one natural Lyapunov function is given by (3). 

 

In a general network, by virtue of the results in 4.1 above: if we start at a feasible (𝐗, 𝐑), then PAP 

route-flow X swapping (toward cheaper routes) (2) and P0 red-time R swapping (toward cheaper anti-

stages) (1) both reduce V if k is small enough. Thus simultaneously following (1) and (2) reduces V. 
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The paper shows, in a general network: 

A: that if f is bounded then under reasonable conditions these dynamics cause (𝐗, 𝐑) to converge to the 

set of those (𝐗, 𝐑) which minimize V, given by (3), and  

B: that if f is unbounded, representing capacity limits on links; then, under reasonable conditions, 

dynamics (2) and (1):  

(a) keep delays bounded and  

(b) cause (𝐗, 𝐑) to converge to the set of those (𝐗, 𝐑) which minimize V.  

This does not always happen with standard control policies; see Smith (1979c) for example. 

 

4.3. Extension to a different control policy but still using the above functions fi   

 

Given the currently arbitrary functions  fi , our major initial assumption (stated in section 2.3 above) is 

still to be that  

    the link i bottleneck delay time or bottleneck delay cost = bi = fi (xi + siri) seconds.  

This delay time or delay cost (in seconds) is felt by the car driver.  

 

Now we design a variation of the P0 signal control policy. To do this we suppose given n non-decreasing 

functions hi = hi(ri). This variation of policy P0, which we call Ph, is defined as follows.  

 

First we define, for each link i,  

the new link i red-time cost = sibi + hi = si f i (xi + siri) + hi(ri);  

this cost is again to be felt or measured by the signal controller, and the new anti-stage cost Ahu is then 

defined for all (X, R) to be: 

   Ahu(X, R) = ∑ link i belongs to anti-stage u [sibi + hi] = ∑ link i belongs to anti-stage u [sifi (xi + siri) + hi(ri)].   

Using this new definition of anti-stage red-time cost, control policy Ph swaps red-time from more costly 

anti-stages to less costly anti-stages. This is given in more detail in the following definition (4) which 

is a slightly changed version of definition 1. 

 

Definition 3. The signal timing proportional Ph adjustment process PPhAP. 

Given a small k > 0, for all ordered pairs of anti-stages, (anti-stage a, anti-stage e), at the same junction, 

the proportional Ph adjustment process (PPhAP): 

 swaps red time k[Ra(Aha – Ahe)]+ from anti-stage a to anti-stage e.                (5) 

     

Ph is built into the red-time adjustment process (PPhAP) or (5) using the sibi and hi in the definition of 

red-time-costs in this section 4.  

 

As with swapping rule (1), swapping rule (5) is similar to the route flow adjustment PAP in Smith 

(1984) but uses red-times which react to red-cost differences instead of route-flows which react to route-

cost differences.  

 

Remark. In this case the new control policy depends on n fixed arbitrary non-decreasing functions hi. 

 

Every link i in our network has saturation flow si, link flow xi, red-time ri (which may be zero for many 

links), an arbitrary non-decreasing fi(xi + siri), and an arbitrary non-decreasing function hi(ri). For each 

link i define: 

                           𝑉𝐡𝑖(𝑥𝑖, 𝑟𝑖) = ∫ 𝑐𝑖(𝑢)𝑑𝑢
𝑥𝑖

0

+ ∫ 𝑓𝑖(𝑢)𝑑𝑢
𝑥𝑖+𝑠𝑖𝑟𝑖

0

+ ∫ ℎ𝑖(𝑢)𝑑𝑢
𝑟𝑖

0

                                          (6) 

and then put 

                                                                      𝑉𝐡(𝐱, 𝐫) = ∑  𝑉𝐡𝑖(𝑥𝑖, 𝑟𝑖)

𝑛

𝑖=1

.                                                             (7) 
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It follows that  

 𝜕𝑉𝐡(𝐱, 𝐫)/ 𝜕𝑥𝑖  = 𝜕 𝑉𝐡𝑖(𝑥𝑖, 𝑟𝑖)/𝜕𝑥𝑖 = 𝑐𝑖(𝑥𝑖) +  𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖) 

and 

𝜕𝑉𝐡(𝐱, 𝐫)/ 𝜕𝑟𝑖 = 𝜕𝑉𝐡𝑖(𝑥𝑖, 𝑟𝑖)/𝜕𝑟𝑖 = 𝑠𝑖𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖) + ℎ𝑖(𝑟𝑖).   
So that 

(𝑐𝑖(𝑥𝑖) +  𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖), 𝑠𝑖𝑓𝑖(𝑥𝑖 + 𝑠𝑖𝑟𝑖) + ℎ𝑖(𝑟𝑖)) is the gradient of 𝑉𝐡𝑖 

and  

(𝐜(𝐱) + 𝐟(𝐱 + 𝐬𝐫), 𝐬𝐟(𝐱 + 𝐬𝐫) + 𝐡(𝐫)) is the gradient of 𝑉𝐡(𝐱, 𝐫) = ∑  𝑉𝐡𝑖(𝑥𝑖, 𝑟𝑖)

𝑛

𝑖=1

.                      (8) 

Using standard arguments, it now follows that [C(X, R), Ah(X, R)] is a gradient. 

 

4.3.1. For arbitrary non-decreasing fi and hi (control, routeing) adjustment (4) with (2)        

          is stable. 

 

In a general network, by virtue of the results in 4.3 above: if we start at a feasible (𝐗, 𝐑), then PAP 

route-flow X swapping (toward cheaper routes) (2) and Ph red-time R swapping (toward cheaper anti-

stages) (5) both reduce Vh if k is small enough. Thus, under natural conditions, simultaneously following 

(5) and (2) reduces 𝑉𝐡. 

 

In appendix B in the full paper it is shown that, in a general network: 

(i): if f is bounded then under reasonable conditions these dynamics cause (𝐗, 𝐑) to converge to the set 

of those (𝐗, 𝐑) which minimize 𝑉𝐡, given by (7), and  

(ii): if f is unbounded, representing capacity limits on links; then, under reasonable conditions, dynamics 

(2) and (5): (a) keep delays bounded and (b) cause (𝐗, 𝐑) to converge to the set of those (𝐗, 𝐑) which 

minimize 𝑉𝐡, given by (7). This does not always happen with standard control policies; see Smith (1979) 

for example. 

 

5. Extensions to allow increased link delay functions as well as the original real link delay 

functions   
 

The results obtained in the previous sections apply for any fixed collection of non-decreasing non-

negative link functions fi(xi + siri).  

 

Given an arbitrarily chosen collection of n non-decreasing non-negative functions fi(xi + siri), it follows 

that:  

(A) typically real bottleneck delays bi actually experienced will be very different to the above arbitrarily 

chosen fi(xi + siri) and, somewhat on the other hand, 

(B) we have proved stability results (see section 4 above) for a very wide variety of arbitrary (non-

decreasing) functions fi(xi + siri) and hi(ri). 

 

There are two directions which arise when we consider the two statements A and B above. These are:  

Direction A: Select the fi(xi + siri) so as to most closely approximate real delay functions, and  

Direction B: Select the fi(xi + siri) and the hi(ri) so as to most help control traffic flows and queues. 

 

Directions A and B are very likely to be conflicting directions; it is very unlikely that the real delay 

functions fi(xi + siri) will ALSO be the delay functions which control the network best.  

 

Now assume that real delay functions have been determined; we denote these by fi(xi + siri).  

 

Given these real delay functions, which give delays which are actually felt by drivers, we show here 
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how to exploit both directions A and B even when these directions are conflicting (which is the usual 

case).  

 

Of course we use the real delay functions fi(xi + siri) (following direction A), but also we follow direction 

B here by using increased delay functions f Ii(xi + siri). These are defined as follows:  

f Ii(xi + siri) = max{mi(xi + siri), fi(xi + siri)} ≥ fi(xi + siri) for all (xi + siri) ≥ 0. 

In this paper we utilise only these very simple linear “potentially better” increased delay functions. 

Here the mi are fixed and ≥ 0. We do not discuss in this paper how the mi or the hi the are selected. 

 

We emphasise that the functions fi(xi + siri) are now supposed here to be the real delay functions, 

actually felt by drivers. The paper does not suggest how these might be chosen. But it would be 

reasonable to begin by looking at Webster’s delay formula. The mi and so the increased delay functions  

f Ii (xi + siri) = max{mi(xi + siri), fi(xi + siri)} 

are now also fixed in the rest of the document. 

 

We have fixed both  

the real delay functions fi(xi + siri) and the increased delay functions f Ii(xi + siri).  

We do not say here how the fi(xi + siri) or the mi are chosen. 

 

5.1.  Real delay functions fi(xi + siri) and increased delay functions f Ii(xi + siri) 

 

For link i possible different delay functions, solid curve (increased) and dotted curve (real) are 

illustrated in figure 3.  

Figure 3. This shows both a reasonable real delay function fi (xi + siri) (dotted) and a reasonable 

increased delay function f Ii (xi + siri) (solid).  

 

Now we seek to control the real network (using the dotted real delay curve) employing the solid 

increased delay curve as a “target” delay curve. 

 

Like this we  

(a)  retain the stability shown in section 4 using the increased delay function f 
I

i
(x

i
 + s

i
r

i
) and   

 Real link delay 

function f
i 
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i
 + s

i
r

i
)  

and  

Increased link delay 
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I

i 
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i
 + s
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r

i
)  

   

x
i
+s

i
r

i
 s

i
 

Increased  
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i 
(x

i
 + s

i
r

i
) 

Real  

delay function 
f 

i 
(x

i
 + s

i
r

i
) 
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(b)  MAY cause routeing / control adjustments which reduce agreed measures of network      

               performance (such as queue volumes and flows); using f 
I

i
(x

i
 + s

i
r

i
) and f

i
(x

i
 + s

i
r

i
) together. 

 

 
Figure 4. Real (dotted) and Increased (solid) link delay functions. Here r

i
*  or x

i
 + s

i
r

i
*  is determined 

by increasing the red time r
i
. by r

i
* - r

i
.; this red-time increase r

i
* - r

i
. is designed to ensure that the real 

delay f
i 
(x

i
 + s

i
r

i
*) actually felt by drivers does equal f 

I

i
(x

i
 + s

i
r

i
). 

 

With these two functions f Ii and fi, the red-time re-allocation is to be a simply modified form of rule (1) 

in definition 1; the simple modification takes careful account of both the real delay formulae fi(xi + siri) 

and the increased delay functions f Ii(xi + siri) above.  

 

5.2.  Ensuring that delays required by the increased delay functions f Ii(xi + siri) are felt, using the 

real delay functions fi(xi + siri) 

 

As illustrated in figure 4, given the real delay formula fi(xi + siri) and given the increased delay function 

f I
i(xi + siri) above, we determine xi + siri* and so ri*, by following the three arrows (up, right, down) 

toward the bottom of figure 4. It is always the case that ri* ≥ ri. Following the three arrows in this way 

guarantees that ri* satisfies:  

f Ii (xi + siri) = fi (xi + siri*); 

ensuring that the delays  f Ii (xi + siri) are actually felt as fi (xi + siri*); provided we choose the real red-

time to be ri*  

 

Thus we may control the network using the real cost functions fi (xi + siri*), by choosing ri* so that ri 

follows (1) above with the increased delay function. Then provided x follows (2) we retain the stability 

shown in section 4, with the increased delay function f Ii (xi + siri). 

 

In more detail, if we wish ri to follow (1), and hence (say) increase ri to ri + αi, with the increased delay 

function then we would increase ri* to (ri + αi)* with the real delay function as shown in figure 5 where 

 (xi + siri) determines (xi + siri*) and (xi + si(ri
 + αi)) determines (xi + si(ri + αi)*). 

 

 Real link delay 

function f 
i 
(x

i
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i
r

i
)  

and  

Increased link delay 
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I

i 
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Figure 5. Increased (solid) and real (dotted) link delay functions. Showing also the connections 

between x
i
 + s

i
r

i
  and x

i
 + s

i
r

i
*, and between x

i
 + s

i
(r

i
 + α

i
) and x

i
 + s

i
(r

i
 + α

i
)*. 

 
In figure 5 r

i
* is determined by increasing the red time r

i
 by r

i
* - r

i
 to ensure that   

f 
I

i 
(x

i
 + s

i
r

i
) = f

i
(x

i
 + s

i
r

i
*).  

Also (r
i
 + α

i
)* is determined by increasing the red time (r

i
 + α

i
) by (r

i
 + α

i
)* - (r

i
 + α

i
) to ensure that  

f 
I

i 
(x

i
 + s

i
(r

i
 + α

i
))  = f

i
(x

i
 + s

i
(r

i
 + α

i
)*). 

So we may use the ri* and the real delay curve to control the ri in accordance with (1) with the 

increased delay function; and still have stability even though the real cost functions fi (dotted) are not 

at all the same as the increased delay functions f Ii.  
 

5.1.1  Summary.  

Suppose we are using the increased delay function at x
i
+s

i
r

i
. The increased delay function then gives a 

delay of f 
I

i 
(x

i
 + s

i
r

i
); this is much larger than the real delay f

i
(x

i
 + s

i
r

i
) also at x

i
+s

i
r

i 
, as shown by the 

real dotted curve. Somehow we must arrange that the real delays felt are actually f 
I

i 
(x

i
 + s

i
r

i
). To achieve 

this we utilise the dotted real delay function with an increased red time as shown above. 

 

5.1.2  An alternative view.  

An alternative way of thinking about the above addition of red time is as follows. The above addition 

of red-time may be thought of as shifting the dotted real curve to the left; this is illustrated in figure 5 

by the light dotted curve in figure 5. To shift the dotted curve to the left as shown we must increase the 

red-time from r
i
 to r

i
* shown in figure 5. The light left-shifted dotted curve shown in figure 5 is just the 

bold dotted curve moved to the left by s
i
(r

i
* - r

i
). The shift we need, at (x

i
 + s

i
r

i
), in the dotted real curve 

is illustrated in figure 5: the shift is the length of the arrow joining the lower circled point to the lower 

point surrounded by a square. Thus the added red-time must be (r
i
* - r

i
). Provided this is added to the 

red-time r
i
 the dotted real delay curve, showing the delay actually felt, will indeed be shifted to the left 

by s
i
(r

i
* - r

i
) and 
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   f
i 
(x

i
 + s

i
[r

i
 + (r

i
* - r

i
)]) = f

i
(x

i
 + s

i
r

i
*) = f 

I

i 
(x

i
 + s

i
r

i
). 

Thus we have achieved our aim to cause traffic to feel a real delay f 
I

i 
(x

i
 + s

i
r

i
); at x

i
 + s

i
r

i
*. Further the 

shift we need at x
i
 + s

i
(r

i
 + α

i
), in the dotted real curve, is illustrated in figure 5: the shift is the length 

of the arrow joining the upper circled point to the upper point surrounded by a square.
 

 

6. Illustrative example; gating is required to reduce equilibrium queues. 

 
Figure 1 illustrates a simple network with one traffic signal at a bottleneck at node n2. As is shown in 

section 1.4 gating at the traffic signal reduces equilibrium queues. We reconsider this network here. 

 
Figure 6. With gating: Link 1 green-time proportion g1 = ½ < 1. Provided the bypass link 3 has a large 

capacity, gating ensures that the link 1 queue is more than halved. See appendix A in the full paper for 

a detailed justification of this statement. Much of the traffic originally using link 1 is diverted to the 

bypass link 3, away from links 1 and 4. 

 

Now we examine this network without and with gating in more detail, as T increases, using the real 

and increased delay-flow curves illustrated in figures 3, 4, and 5. T increasing may be thought of as an 

increasing part of a peak period.

Figure 7. This shows how flow on link 1 varies with the OD flow T; with both a reasonable real delay 

function fi (xi + siri) (dotted) and a reasonable increased delay function f Ii (xi + siri) (solid). If the real 

delay function is switched to the increase delay function by using the gating mechanism in this paper, 
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flows on link 1 are reduced and the reduction is greater closer to the peak of the peak.   

Figure 8. This figure shows how the queue on link 1 varies as the OD flow T increases, with both a 

reasonable real delay function fi (xi + siri) (dotted) and a reasonable increased delay function f I
i (xi + 

siri) (solid). If the real delay function is switched to the increased delay function by using the gating 

mechanism in this paper, queues on link 1 are reduced near the peak of the peak, but increased earlier.   

 

7. Conclusion. 

 
This paper states a new sensitive gating method, and shows how this method may reduce queues and 

flows on sensitive links. The method fits into the control policy Ph which is capacity maximising, and 

the [Ph + gating] combination described here is still, under certain conditions, capacity maximising. 

There are many opportunities for developing the method described here. 

 

7.1. The major assumption.  

 

The main motivation behind the MAJOR ASSUMPTION, that link i delays have the form of an 

increasing function of (x
i
 + s

i
r

i
), is that with this major assumption we can obtain the stability results in 

section 4. The main “next step” must be to seek relaxations on this major assumption.  

 

7.2. The mainly linear increased delay function.  

 

We have chosen the increased delay function  

f Ii (xi + siri) = max{mi(xi + siri), fi(xi + siri)}. 

The linear function mi(xi + siri) has been chosen for a variety of reasons: 

(i) our linear function mi(xi + siri) is simple; 

(ii) the need to divert traffic from sensitive links increases as flows and red times increase so 

mi should be > 0 (and the added delays should not be constant); 

(iii) our linear function mi(xi + siri) is small if xi + siri is small, and so has little effect when 

flows and red-times are small, which is desirable; and we do not need to increase real-life 

link  delays substantially when flow and red-times are small, which could be both difficult 

technically and also controversial in practice. 

 

The increased function f I
i (xi + siri) = max{mi(xi + siri), fi(xi+siri)} = fi(xi+siri) beyond a certain xi+siri. 
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Perhaps one aim would be to choose the mi so that this is a reasonably rare occurrence. 

 
7.3. Future developments.  

 

This paper has introduced a new sensitive gating strategy. The strategy has a vector of parameters m. 

The possibility of adjusting m from day to day merits exploration; perhaps using AI or ordinary 

intelligence. The greatest, and most immediate, need is for a relaxation of the major assumption.      
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Abstract: This study investigates the impact of varying emission weight coefficients in the objective function of 

a Dynamic User Equilibrium (DUE) model. The primary aim is to analyze the sensitivity of route choice, travel 

costs, and emission reductions to changes in the emission operator’s weight. An analytical framework is 

developed to explore equilibrium properties under different weighting scenarios. The findings provide insights 

into the trade-offs between travel time and environmental impact, offering theoretical foundations for emission-

based traffic control policies. 
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1. Introduction 

Due to environmental degradation, transportation planning has increasingly incorporated an environmental 

perspective to mitigate the negative impacts of vehicular traffic on road networks. Road transportation has 

been identified as one of the largest sources of carbon emissions, air pollution, and fuel consumption [1]. 

To address these concerns, researchers have focused on integrating emission considerations into traffic 

assignment models, leading to developing environmentally friendly traffic assignment frameworks.  

Traffic assignment models are essential for analyzing and optimizing vehicular flow across road networks 

while considering various constraints, including environmental impacts. These models aim to replicate real-

world traffic behavior under simplified assumptions, enabling transportation planners to assess congestion 

patterns, estimate emissions, and develop effective mitigation strategies. Based on their treatment of tem-

poral variations in traffic flow, traffic assignment methods can be classified into three categories: static 

traffic assignment (STA), semi-dynamic traffic assignment (semi-STA), and dynamic traffic assignment 

(DTA). 

STA methods assume that traffic conditions remain constant over a given period, disregarding variations 

in congestion levels and travel demand fluctuations. This approach is computationally efficient and widely 

used for long-term planning but lacks the ability to model time-dependent congestion and queuing effects. 

DTA, on the other hand, models traffic flow as an evolving system where vehicles respond dynamically to 

congestion, route availability, and travel time variations. DTA integrates time-varying origin-destination 

(O-D) matrices, allowing it to capture key traffic phenomena such as queue spillback, shockwaves, and 

speed fluctuations [2]. As a result, DTA provides a more realistic representation of network conditions and 

is particularly valuable for studying real-time traffic management strategies and emission-reduction policies 



[3]. Given its ability to reflect detailed traffic dynamics, integrating environmental objectives into DTA 

models has become a crucial research area [4]. By incorporating emission models into dynamic cost func-

tions, researchers can evaluate how traffic control strategies impact both congestion and air quality, ulti-

mately informing the development of sustainable urban mobility solutions. Dynamic User Equilibrium 

(DUE) models traditionally prioritize travel time minimization, but recent advances incorporate environ-

mental objectives to achieve a balance between efficiency and sustainability [4]. The aim is to evaluate how 

varying emission weights influence route choices and system-wide emissions, providing insights into the 

trade-offs between travel time and environmental impact.  

In our previous study [5], we presented a methodology to explicitly consider emissions in the DUE objective 

function alongside delays. This study extends our previous work on emission-integrated DUE models by 

conducting a sensitivity analysis on the weight of the emission operator in the objective function. The con-

tributions of this study are as follows: i) Development of an analytical framework for evaluating the sensi-

tivity of emission weights in DUE models ; ii) Examination of equilibrium properties under different 

weighting scenarios, and ; iii) Insights into the trade-offs between travel time and emissions for policy 

implications. 

2. Methodology 

We consider the following dynamic objective function [5]–[7]. 
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where,  is the set of paths in the network, is the set of O-D pairs in the network, ijQ is the O-D demand 

between ( , )i j  , ij  is the subset of paths that connect O-D pair ( , )i j , t is the time parameter in a time 

horizon 0[ , ]ft t , ( )h t is the complete vector of departure rates ( ) ( ( ) : )ph t h t p=  , ( )ph t is the departure rate 

along path p at time t , ( , )p t h  is the travel cost along path p  with the departure time t  under the departure 

profile h , ( )ijv h is the minimum travel cost between O-D pair ( , )i j  for all paths and departure profiles, ph

is the flow on path p , ( )p pT h represent the travel time operator based on the flow on path p (

( ) : ,pT p+ +     ), M is the set of all pollutant types, , ( )m p pE h denotes the emissions of pollutant 

m on path p ,  and  is the weight coefficients. Here, 0, 0   and 1 + = . 

The sensitivity analysis of the presented objective function is conducted on Istanbul Technical University 

(ITU) campus network [8]. ITU network consists of 78 nodes, 178 links, 344 O-D pairs, and a total of 6039 

paths. The demand data is collected through real-world measurements (i.e., observed speeds on links, 



turning ratios at intersections), which are used to obtain demand profiles ijQ  (for morning peak hours). We 

analyze the sensitivity of DUE solutions through the parameters  , and  . We change the values of 

and  from 0 to 1 with 0.05 increments. The sensitivity analysis is conducted on an analytical model in 

MATLAB. Each solution is for 18000 seconds with 1 second time step. The emission results are obtained 

through the integrated emission model of Barth and Boriboonsomsin [9].  

3. Results and Conclusion 

The sensitivity analysis conducted on the ITU campus network examines the impact of varying emission 

weight coefficients on total emissions (grams) and total delay (hours). The results demonstrate a clear trade-

off between travel efficiency and environmental impact, as illustrated in Figure 1. The results indicate that 

increasing the emission weight (  ) in the objective function shifts route choices towards more environ-

mentally friendly paths, reducing emissions but at the cost of increased total delay. Conversely, prioritizing 

delay minimization ( ) results in higher emissions due to traffic concentration on faster but more con-

gested routes. The pure delay-based DUE solution produces the lowest total delay (6.09x10⁶ hours) but 

results in the highest total emissions (5.03x10⁹ grams). Introducing a small emission weight already results 

in a measurable reduction in emissions, demonstrating the effectiveness of eco-routing with minimal impact 

on delay. At α=0.90, β=0.1, emissions reach their lowest recorded level in the sensitivity analysis 

(4.995x10⁹ grams), while the total delay remains within a reasonable range (6.11x10⁶ hours). 

The relationship between emissions and delay exhibits nonlinear characteristics. Moderate emission prior-

itization (β between 0.05 - 0.1) significantly reduces emissions without drastically increasing delay. Beyond 

a certain threshold ( 0.2 0.1  ), emission reductions plateau, while the total delay continues to rise, 

making further emission prioritization inefficient from a traffic performance perspective. From a policy 

standpoint, the results suggest an optimal range of values (0.05. - 0.2) where sustainable routing can be 

effectively integrated into traffic assignment models without excessively impacting travel time. Prioritizing 

emissions entirely (α=0, β=1) leads to the highest total delay (6.19 × 10⁶ hours) while achieving marginal 

emission reduction gains beyond the optimal trade-off point. 

Building on the analytical framework established in this study, future extensions will focus on incorporating 

stochastic elements to better reflect the inherent variability in real-world traffic systems. This includes the 

integration of stochastic fundamental diagrams to capture uncertainties in flow-density relationships and 

stochastic route choice models to represent variability in driver behavior beyond the deterministic Wardrop 

equilibrium assumptions. Additionally, the framework could be expanded to explore multi-class user dy-

namics, real-time adaptive control strategies, and uncertainty propagation in emissions modeling.  



 

Figure 1. Obtained results of the sensitivity analysis 
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1. Introduction  9 
Agent-based modeling (ABM) has been an important tool for both researchers and practitioners in 10 
various fields, including transportation planning. It captures the interactions between individuals and 11 
provides a simulation environment to test transportation and mobility-related policies based on the 12 
decisions of millions of agents within a transportation system (Bowman and Ben-Akiva (2001)). It is 13 
crucial to provide a realistic and representative set of individuals or households (HH) as a key input for 14 
ABM. This set of agents is called a synthetic population, which is often formulated as a fitting problem 15 
over different combinations of socio-demographic attributes based on survey data (Muller and Ivt 16 
(2011); Harland et al. (2012)).  17 

Early studies on population synthesis focused on iterative proportional fitting (IPF) (Beckman et 18 
al. (1996); Pritchard and Miller (2012); Zhu and Ferreira (2014)), simulation-based approaches (Farooq 19 
et al. (2013)), Bayesian networks (Sun et al. (2018)), Hidden Markov Models (HMM) (Saadi et al. 20 
(2016)). And these methods have been pointed out with issues on scalability, algorithmic complexity, 21 
dimensionality, sampling and structural zeros (Borysov et al. (2019); Garrido et al. (2020); Kim and 22 
Bansal (2023)). To tackle the issues, researchers adopted deep generative models (DGMs) such as 23 
Variational Autoencoders (VAEs) (Kingma and Welling (2013)), Generative Adversarial Networks 24 
(GANs) (Goodfellow et al. (2014)) in generating the synthetic population. This research applies DGMs 25 
(VAE, GAN, Wasserstein GAN (WGAN), and Conditional Tabular GAN (CTGAN)) to the travel 26 
survey data collected from the metropolitan region of two adjacent cities, Sejong and Daejeon in Korea, 27 
and verifies the generated result based on the population distribution and commuting patterns.  28 
 29 
2. Method 30 
2.1 Data  31 
The household travel survey (HTS) data was collected in the Daejeon and Sejong region, which has a 32 
population of around 2 million and covers an area of 1,000 square kilometers in 2016 (publicly available 33 
on KTDB (Korea Transport Database)). We have sorted out key attributes (including addresses of 34 
activity locations defined at an administrative zonal level) that are relevant to the travel behavior 35 
modeling as in Table 1.  36 
 37 
Table 1. List of socio-demographic attributes 38 

# Attributes Type Details 
1 Region Categorical Region of respondents 

2 HH Size (HHS) Int Size of a household 

3 Kids in household 
(HHK) Int Number of Child under 5 in a HH 

4 House type (HHT) Categorical 1: Apartment, 2: Multiplex, 3: Multi-family, 4: Single-family, 5: 
Condo, 6: Other 

5 Income of HH (INC) Categorical 1: <1M, 2: 1-2M, 3: 2-3M, 4: 3-5M, 5: 3-10M, 6: >10M 
(unit: KRW) 

6 Car Ownership 
(OWN) Binary 0: with, 1: without 

7 Age Categorical [0, 5), [5, 10), [10, 15), … , [45,50), …, [90,95), [95,100), 
[100 

8 Gender Binary 0: Male, 1: Female 
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9 Car license (LIC) Binary 0: with, 1: without 

10 Students (STU) Categorical 1: Preschool, 2: Elementary, 3: Middle/High, 4: 
Undergraduate/Graduate, 5: Etc. 

11 Job category (WTY) Categorical 
1: Professional, 2: Service, 3: Retails, 4: Managers and 

Administration, 5: Agriculture, 6: Laborer, 7: housewife, 8: 
Unemployed (Student), 9: Other 

12 Work from home 
(WFH) Binary 0: yes, 1: no 

13 Num. of working days 
(WDY) Categorical 1: > 6 days, 2: 5days, 3: 3-4 days, 4: 1-2 days, 5: 0 

14 Address of HH Categorical Defined at an administrative zonal level 
15 Address of Work Categorical Defined at an administrative zonal level 
16 Address of Edu Categorical Defined at an administrative zonal level 

 1 
2.2 DGMs: VAE, GAN, WGAN, CTGAN  2 
The VAE synthesizes population data by first encoding real individual-level records into a continuous 3 
latent space. During training, the model learns to approximate the data distribution by minimizing the 4 
reconstruction error and the Kullback-Leibler Divergence between the encoded latent distribution and 5 
a prior distribution. After training, synthetic individuals are generated by sampling from the latent space 6 
and decoding them back into the original data space. GANs generate synthetic population data through 7 
a game-theoretic framework involving a generator and a discriminator. The generator attempts to 8 
produce realistic individual records, while the discriminator learns to distinguish between real and 9 
synthetic records. Through adversarial training, the generator learns to approximate the true data 10 
distribution. WGANs improve upon the standard GAN by using Wasserstein distance as a more stable 11 
and meaningful measure of distributional difference. In population synthesis, WGANs allow for more 12 
robust training and better convergence by replacing the discriminator with a critic that scores the 13 
“realness score” of samples. This approach is particularly effective for high-dimensional population 14 
data with rare attribute combinations, as it reduces mode collapse and ensures diversity among the 15 
generated individuals. CTGAN is specifically designed for generating tabular data with mixed data 16 
types, including highly imbalanced categorical variables. CTGAN uses a conditional vector to guide 17 
the generation process, allowing the model to produce synthetic individuals with specific demographic 18 
characteristics. It applies mode-specific normalization for continuous variables and Gumbel-Softmax 19 
sampling for categorical variables, enabling accurate replication of both common and rare combinations 20 
of population attributes. The architectures of each network are summarized in Table 2.  21 
 22 
Table 2. Hyperparameters settings 23 

 VAE GAN WGAN CTGAN 
Latent dim 128 128 128 128 
Hidden dim 1024 1024 1024 256 
Activation ReLU ReLU ReLU LeakyReLU 
Learning rate 5e-5 Generator: 1e-4 

Discriminator: 1e-4 
Generator: 1e-4 
Discriminator: 1e-4 

Generator: 2e-4 
Discriminator: 2e-4 

Optimizer Adam Adam RMSprop Adam 
 24 
3. Results 25 
3.1 Model Performances  26 
Figure 1 shows the generated results for joint distribution for key attributes (Income, Job category, and 27 
Locations of household/work). One can notice VAE, WGAN, and CTGAN show a good agreement 28 
with the estimation from real data (0.0272-0.0316 of SRMSE), while the standard GAN results in higher 29 
error (standardized root mean square error, SRMSE) and less correlation measure. This result is also 30 
consistent with earlier works (Garrido et al. (2020)). Also note that details of marginal distributions are 31 
presented in Figure 2.  32 
 33 
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 1 
(a) VAE (b) GAN (c)WGAN (d) CTGAN 2 

Figure 1. Comparison of multidimensional joint distributions 3 
 4 

 5 
Figure 2. Marginal distribution of each attribute (Example: WGAN) 6 

 7 
3.2 Verification on Travel Patterns 8 
For the verification purpose, we compare the travel patterns for different types of trips. The trips in the 9 
study area can be categorized into internal trips (within a city), inter-city trips (between two cities), and 10 
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incoming/outgoing trips from/to other regions. Comparing the generated and observed trips for each 1 
OD pair (Table 3), overall travel patterns from two data are consistent. Accordingly, large portions of 2 
trips are made within Daejeon (~80%) and Sejong city (~10%) while inter-city, incoming/outgoing trips 3 
are captured in small.  4 

 5 
Table 3. Generated and observed OD table (Example: WGAN) 6 

 
(unit: %) 

Daejeon Sejong E1 E2 E3 

WGAN HTS WGAN HTS WGAN HTS WGAN HTS WGAN HTS 

Daejeon 77.93 84.18 4.70 0.66 0.23 0.07 0.88 2.13 2.66 0.09 

Sejong 0.97 0.35 9.74 10.06 0.02 0 0.02 0.11 0.03 0 

E1 0.28 0.39 0.44 0.43 - - - - - - 

E2 0.06 0.90 0.44 0.55 - - - - - - 

E3 0.72 0.09 0.33 0  - - - - - - 

Note: E1 (Seoul- Gyeonggi region), E2 (Chungcheong region), E3 (Other region) 7 
 8 
4. Summary  9 
This paper presented how DGMs can handle high-dimensional attributes, including socio-demographic 10 
and geographic information on individual activities, within a large-scale metropolitan area. The current 11 
research stream focuses on: (i) the application of recent AI models—such as large language models—12 
to better represent socio-demographic descriptions in local or transportation-specific contexts, and (ii) 13 
the evaluation of activity patterns using agent-based modeling simulations for a given synthetic 14 
population. These enhancements aim to improve the credibility of agent-based simulations in 15 
replicating real-world traffic network dynamics. 16 
 17 
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1. Introduction  

 

There are more than 120,000 kilometres of planned, operative and under construction High-

Speed Rail (HSR) lines worldwide, and in particular up to 60,000 kilometres of lines in operation 

(UIC, 2023). Passengers travelling with the HSR services in Europe have grown from the 15 

billion passenger-kilometres in 1990 to 124 billion in 2016 (EU, 2024).  

High Speed Rail (HSR) lines generate effects on passengers’ travel demand which are gener-

ally segmented into the three components (Ben Akiva at al., 2010; Givoni and Dobruszkes, 2013; 

Cascetta and Coppola, 2014; Russo et al., 2023): diverted, from other modes or other rail services; 

induced, in terms of trip frequency and destination generated by high level of service (e.g. reduc-

tion of travel time) due to HSR; economy-based, in terms of trip frequency and destination gen-

erated by the economy in the cities, or areas, served by HSR. Several studies were conducted on 

models for the estimation of diverted demand, due to the attempt of capturing the demand diver-

sion from the air mode and conventional rail services, as the entering of HSR caused competition 

in the inter-modal (e.g., mode choice) and in intra-modal levels (e.g., service, company and run 

choice) (Givoni and Dobruszkes, 2013; Cascetta and Coppola, 2012).  

As far as concerns diverted demand, fare structures of HSR services play an important role in 

the intra-modal and inter-modal competition of the intercity passenger mobility. In broad terms, 

it is possible to classify the fare structures in static and dynamic, depending on the variation (or 

not) over time. On one hand, static fares are mainly referred to the conventional rail and bus 

services. On the other hand, dynamic fares historically characterized the air services, and, in the 

last decades, this typology of structure has been using in the High Speed Rail (HSR) services 

(Russo et al, 2024).  

Two important themes are present in the intra-modal competition: 

• the run choice model; 

• the evolution of fares in the days before the journey. 

The two themes are studied separately in the literature. The possibility of using innovative 

methods for collecting data relating to the tickets evolution allows the two themes to be combined, 

providing an important contribution for the development of sustainable transport policies in line 

with the goals and targets of Agenda 2030. 

The present work aims to put together the two above research lines that have been historically 

developed independently:  

• the analysis and estimation of dynamic fares of HSR services;  

• the development of run choice models to estimate users’ behaviour in the choice of run in 

the schedule- based intercity transport services. 

The research contribution concerns the definition of a framework for the identification of us-

ers’ choice of HSR run, as well as the development of choice model in the above-mentioned 

dimension.  

mailto:domenico.sgro@unirc.it
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The following sections are organized as follows. Section 2 briefly sketches the characteristics 

of the proposed framework. Section 3 regards the results and the discussion about the experi-

mental testing of the proposed framework on a case study. Section 4 contains some remarks and 

research perspectives.  

This work is aimed to support transport planners and decision-makers to inform sustainable 

transport policies in the evaluation of investment in HSR lines and services, by means of meth-

odological and modelling tools to assess actual and potential HSR travel demand.  

 

2. Proposed framework 

 

The proposed framework is composed by two main phases. The former phase deals with the 

identification of user’s choices by analysing the patterns of dynamic fares of HSR services. The 

latter phase deals with the specification, calibration and validation of a run choice model.  

 

2.1. Identification of user’s choice 

 

The hypothesis considered is that the users' choice of run can be identified in relation to the 

day-to-day ticket evolutions observed between two consecutive days, considering when the user 

buys the ticket in relation to the day of trip.  

The monitoring of ticket evolution is an innovative data collection because it has a huge quan-

tity of information that needs specific collection, but gives the possibility to update the model in 

a very cheap, repeatable and easy way. 

The phase is sub-divided into three steps. 

Step 1. Ticket coding, where every fare structure of every company is described by means of a 

vector; 

Step 2. Day-to-day ticket costs’ updating, where the day-to-day fare variations are compared; 

Step 3. Identification of number of ticket mutations for each run in each day and association to 

user’s choice of a run. 

 

2.2. Run choice model 

 

The development of the run choice model implied two elements: the choice set and the run 

choice model building. 

The choice set building at path choice dimension has been widely studied for the literature 

(Ben-Akiva et al.; 1984; Russo and Vitetta, 1995; Morikawa, 1996; Ben-Akiva et al., 2002; Cas-

cetta et al., 2002). The case considered in this paper concerns, without affecting generality, the 

choice set of runs is generated taking into account the Desired Arrival Time (DAT) of a user at 

destination. 

The choice models are based on the random utility (RU) (Ben-Akiva and Lerman, 1985; Cas-

cetta, 2013; Train 2009; McFadden, 2001; Ben-Akiva, McFadden, Train, 2019). One of the main 

assumptions concerns that a user chooses a run, among the set of perceived alternatives, which 

maximize his/her perceived utility associated to each run. The calibration phase allows to obtain 

the estimates vector of models’ parameters, according to users’ choices. It is possible to estimate 

the vector of parameters with different method, for instance the maximum likelihood, which re-

turns the values of the unknown parameters, the latter maximize the probability of observing the 

users’ choices.  
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3. Results 

The proposed procedure has been tested on the HSR relationship Rome-Milan, which is the 

main HSR line in the national rail network. The line belongs to traditional basic network for a 

short infrastructural stretch and belongs to the High Speed/High Capacity basic network for the 

Florence-Milan infrastructural stretch equipped with ERMTS system. The line is completely elec-

trified with double track (www.rfi.it). The frequency of HSR services is currently 45 runs/day for 

Trenitalia and 33 runs/day for Italo Nuovo Trasporto Viaggiatori (NTV). 

A survey has been conducted aimed at investigating the evolution over time of ticket evolu-

tion, by considering a set of days of trip and days of ticket purchasing. The survey period was the 

month of August of two consecutive years: 2022 and 2023.  

The application of the proposed framework allowed to identify a sample of users’ choices of 

runs and to calibrate of disaggregate run choice model attributes: a fare, or ticket cost associated 

to a run; penalty, or time interval between desired arrival time and scheduled arrival time; on-

board travel time at the railway stations; number of intermediate stops between the departure and 

arrival railway stations. The sign of the calibrated parameter are in line with the nature of the 

attributes. 

 

4. Discussion and conclusion 

 

The research proposes an original framework for the identification of users’ run service choice 

from the collection of data related to the day-to-day evolution of ticket costs a sample of HSR 

services.  

The proposed procedure has been validated for along the relationship Rome-Milan (Italy), by 

the specification-calibration-validation of a run choice model belonging to the class of RU mod-

els. The aim of the validation has been to verify the possibility to ground the proposed procedure 

into a specified and calibrated choice model.  

The procedure presents the following advantages and limitations today. On the side of the 

advantages, the procedure ensures the identification of users’ choices without the execution of 

surveys on users that are quite expensive in terms of time and cost. On the side of the limitations, 

the procedure does not allow the emerging of the number of users that determined the change of 

the ticket cost from one day to another.  

The conclusion is that the procedure has limitations that need to be overcame in the future but, 

nevertheless, the first results reported in this study seem encouraging. Future developments regard 

the extension of the data-base related to number of users and the development of stochastic route 

choice models instead of the wardropian ones. 
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Abstract

Public transportation is essential for sustainable urban mobility, yet overcrowding and queu-
ing often degrade service quality. To improve short-term passenger flow forecasts, this paper
introduces a schedule-based Dynamic Transit Assignment (DTA) framework that integrates fail-
to-board probabilities and hyperpath-based strategic route choices. Unlike conventional models
that define deterministic equilibrium using one-to-many network loading maps, we reformulate it
as a one-to-one fixed-point problem, leveraging a Gradient Projection (GP) approach to enhance
numerical stability and convergence speed.

To further address non-linearities from capacity constraints and fail-to-board events, we in-
corporate an Adaptive Trust Contraction (TC-A) algorithm, which dynamically adjusts step
sizes for greater computational efficiency. Numerical experiments on small- and medium-scale
networks show that the GP plus TC-A framework achieves linear convergence and significantly
outperforms the Method of Successive Averages (MSA) in both precision and speed. These
results underscore its potential for real-time transit optimization under high-demand conditions.

1 Introduction

Accurate simulation of passenger flows in dynamically congested transit systems is essential for
optimizing performance and enhancing the passenger experience. By forecasting these flows
promptly, transit agencies can proactively manage disruptions and reduce congestion, thereby
alleviating overcrowding and shortening wait times.

DTA models are instrumental in replicating how passengers choose routes and interact
within public transit networks, capturing the evolving patterns of travel demand and conges-
tion throughout the day. In macroscopic models, individual travellers are aggregated into flows,
offering a comprehensive view of system dynamics while improving computational efficiency for
large-scale networks (Bellei et al., 2005).

Schedule-based DTA models refine the macroscopic approach by incorporating the temporal
dimension directly into the network topology via diachronic graphs (Nuzzolo & Russo, 1998).
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This technique assumes that passengers possess full knowledge of run timetables, a key difference
from hyperpath-based optimal strategies (Nguyen & Pallottino, 1988, Spiess & Florian, 1989)
that rely solely on the distribution of line frequencies for route choice. Moreover, to accurately
reflect the complexities of passenger decision-making under uncertainty, these models must incor-
porate fail-to-board probabilities (Hamdouch & Lawphongpanich, 2008). This addition captures
scenarios in which capacity constraints prevent boarding, thereby introducing an alternative
formulation of hyperpaths as detailed in Gentile & Noekel (2016).

A robust comparison of design scenarios necessitates high algorithmic precision, which can be
attained by accelerating convergence to an equilibrium between demand and supply. However,
the extensive size of diachronic graphs and the slow convergence of conventional fixed-point
algorithms, such as the MSA, pose significant computational challenges, thereby hindering real-
time short-term forecasts of passenger volumes on vehicles and at stops.

2 Methodology

To capture passenger flows under congested conditions, we reformulate the DTA as a fixed-point
problem. The iterate, denoted by p, represents the vector of arc conditional probabilities (or
destination-specific splitting rates). The mapping function, p = [r,x] encapsulates the processes
of demand loading, network congestion, and route choice. Specifically, r corresponds to the route
choices made by passengers at standard nodes, while x represents the outcomes at stops, i.e.,
the fail-to-board probabilities arising from capacity limitations.

Following the implicit path enumeration approach proposed in Gentile (2016), we define the
arc flows mathbfq as the result of loading the origin-destination demand d onto the network
based on the given arc conditional probabilities p:

q = q(p;d). (1)

Arc flows q are used to compute the arc costs c and the fail-to-board probabilities x. These
quantities account for passenger congestion (i.e, overcrowding and queuing) based on the supply
characteristics s (primarily the capacity constraints, as line speeds are inherently captured within
the diachronic graph structure):

c = c(q; s), (2)

x = x(q; s). (3)

Local (deterministic) route choices, r, are determined via shortest hyper-tree computations
for each destination. These computations yield the arc weights w, which represent the cost to
reach the destination using a given arc, conditional on being at its tail:

w = w(c,x), (4)

r ∈ r(w). (5)

When two or more local alternatives exhibit the same minimum cost, there exist infinitely
many user distributions that satisfy Wardrop’s principles (Wardrop, 1952). Consequently, the
deterministic mapping r(w) yields a set of points. Finally, the arc conditional probabilities are
updated using a convergence method, and the process is repeated iteratively until the convergence
criteria are met.

Traditionally, the problem is formulated by considering a fixed-point mapping defined by the
one-to-many operator provided by the deterministic network loading map described above. This
operator is given by the composition of equations 1, 2, 3, and 4:

p ∈ [r(ŵ(p)), x(q(p))], (6)
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where
ŵ(p) = w(c(q(p)), x(q(p))). (7)

The issue is that the typical all-or-nothing assignment to the shortest hyper-paths, denoted
r∗(w), which is adopted to implement the deterministic network loading map, often leads to
solutions that deviate from equilibrium. The Method of Successive Averages (MSA) addresses
these fixed-point problems by averaging the solutions obtained from applying the map. However,
it suffers from slow convergence due to decreasing step sizes:

p(i+1) = p(i) +
1

1 + γ · i
·
(
f∗(p(i))− p(i)

)
, (8)

f∗(p) = [r∗(ŵ(p)), x(q(p))] (9)

where p(i) denotes the solution at iteration i and γ < 1 is a reduction factor used to decrease
the weight of older iterates and speed up convergence.

Nonetheless, the introduction of the fail-to-board mechanism adds further non-linearities,
increasing the model’s complexity and causing oscillations in cost updates, which in turn further
slow convergence.

To overcome these limitations, we adopt the GP method as fixed-point mapping. Equilibrium
is reached when the difference between the route choices r and the arc weights w (scaled by a
factor σ), when projected onto the feasible region defined by flow conservation, yields the same
point. Formally, this condition is expressed as:

p = f(p) ≡ [ProjR (r(ŵ(p))− σ · ŵ(p))) , x(q(p))], (10)

where the arc weights ŵ(p) are interpreted as the gradient of the Beckmann integral correspond-
ing to our local deterministic model. In other words, they represents the objective function’s
gradient in an optimization program whose solution is an equilibrium. Due to non-separable
congestion effects in transit networks, the traditional Beckmann formulation is not directly ap-
plicable, and the equilibrium conditions can instead be expressed as a Variational Inequality
problem. In this paper, however, we prefer to introduce directly the above equivalent fixed-point
formulation.

Pure GP algorithms may still face challenges with convergence, which is why the step size is
further scaled by an MSA-like factor, proportional to the number of iterations (Gentile, 2016).

We enhance the GP approach with the TC-A algorithm (Gentile et al., 2024). TC-A applies
the feasible direction method (i.e., iterating a step along a descent direction) for nonlinear opti-
mization on convex sets, where the objective function is the sum of squared residuals. It operates
under the assumption that the residual f(p) − p indicates a descent direction with respect to
the sum of squared residuals.

TC-A determines the step size α from p to f(p) by increasing it by a factor of 1+γ1 > 1 if the
current iteration improves the sum of squared residuals compared to the previous one; conversely,
if no improvement is observed, the step size is decreased by a factor of 1 + γ2 > 1. Both the
current iterate and the search direction are continuously updated, under the assumption that
the method will converge for some fixed, though initially unknown, step size. The adjustment
rule for α(i) is given by:

α(i) =


min

(
1, α(i−1) · (1 + γ1)

)
, if y(i) < y(i−1)

α(i−1)

1 + γ2
, if y(i) ≥ y(i−1)

(11)

where y(i) denotes the sum of squared residuals at iteration i. Suggested values for the adjustment
factors are γ1 = 0.1 and γ2 = 0.5.

3



3 Results and Discussion

We evaluated the GP method with TC-A against MSA using a relative gap convergence criterion.
Initial tests were conducted on a simple network with 60 passengers arriving at 1 per minute over
one hour. The network comprised a single transit line connecting two stops, with four departures
every 20 minutes starting at minute 11. In an unconstrained scenario (20-passenger capacity per
run), passengers distributed as expected: 11 boarded the first run, 20 each on the second and
third, and 9 on the last. Without boarding delays, both MSA and TC-A converged in one
iteration. To simulate congestion, we imposed capacity limits of 18, 15, and 10 passengers per
run, representing slight, moderate, and severe congestion. Figure 1 illustrates the convergence
trends, highlighting TC-A’s superior adaptability. Its adaptive step sizing effectively mitigates
non-linearities from fail-to-board probabilities, reducing oscillations and computation time.

Figure 1 – Convergence and step size trends of MSA and TC-A under different congestion levels.
Note that the step size trends for congested MSA (capacities 18, 15, and 10) overlap.

Under an 18-passenger capacity, fail-to-board events emerged as passengers on the second
and third runs queued for later departures. TC-A converged in 3 iterations, while MSA required
15 iterations to reach a relative gap of 10−3. With a 15-passenger capacity, queuing intensified
across the second, third, and fourth runs, causing 4 passengers to be unserved. TC-A converged
in 9 iterations, whereas MSA required 80 iterations. Under severe congestion (10-passenger
capacity), 20 passengers remained unserved. TC-A reached convergence in 10 iterations, while
MSA exceeded 100 iterations to reach a relative gap of 10−3.

We further assessed TC-A on a large-scale network simulating Rome’s morning peak (6–10
A.M.), comprising 60,000 passengers, 50 zones, 6,748 transit stops, and 1,417 transit routes. The
assignment graph featured 2.33 million arcs and 800 capacitated vehicle runs. Both methods
reached a relative gap of 10−2 in 14 seconds, but TC-A required only 6 iterations compared to 11
for MSA. Over 100 iterations, TC-A achieved a gap of 0.001 in 241 seconds, whereas MSA reached
0.003 in 122 seconds. TC-A also showed a more linear and stable convergence trend, consistent
with its gradient-based formulation. These results highlight TC-A’s potential, particularly under
capacity constraints, though further algorithm refinement and testing on operational networks
are needed to validate its practical applicability.
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On the Control of Connected and Automated Vehicles as Moving
Bottlenecks in Freeway Traffic

Nikolas Sacchi and Antonella Ferrara

Abstract— This work explores the potential of controlling at
microscopic scale Connected and Automated Vehicles (CAVs)
forming moving bottlenecks (MBs) to positively impact the
macroscopic freeway traffic dynamics. To achieve this, we
propose a neural network (NN)-based approach to design the
individual CAV control system, which effectively addresses
the traction control problem for the vehicle even when its
model is not perfectly known. Specifically, two NNs are used
to approximate the dynamics of each CAV, and an integral
sliding mode (ISM) control strategy is employed to generate the
necessary longitudinal force for the vehicles within the forma-
tion. This ensures anti-skid braking and anti-spin acceleration
across all road conditions. Then, a direct benefit of controlling
CAVs at the microscopic level is enhanced safety, even in
adverse weather. Additionally, the formations of controlled
CAVs function as artificial MBs within the traffic flow, helping
to alleviate congestion and improve the overall traffic efficiency.

Index Terms— Traffic Dynamics, Neural Networks, Traction
Control

I. INTRODUCTION

Starting from the final decades of the previous century,
a wide range of strategies have been developed to control
freeway traffic, with the goal of minimizing congestion and
improving the overall throughput of road traffic systems
[1]–[4]. More recently, particular attention has been paid
to developing control strategies that also aim to increase
sustainability, hence minimizing factors such as emissions
and fuel consumption [5], [6]. On the other hand, tech-
nology advancements in the automotive field have enabled
the definition of the concept of connected and automated
vehicles (CAVs), that is, vehicles characterized by a high
level of automation and communication capability [7], [8].
The presence of CAVs can have a significant impact on
freeway traffic dynamics, as discussed in [9], [10]. For this
reason, in recent years, particular attention has been given
to the development of strategies that rely on CAVs as active
control elements within traffic systems [11]–[16].

Traction control (TC) is undoubtedly one of the most
widely used driving assistance systems. Its primary objec-
tive is to improve vehicle performance during braking and
acceleration, thereby enhancing stability and safety, even in
challenging external conditions [17]. In general, the traction
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force produced at the vehicle wheels is directly related to
the so-called wheel slip ratio, which, in turn, depends on
the relative difference between the wheel angular speed and
the vehicle longitudinal speed. Hence, the traction control
problem can be treated as a wheel slip ratio control problem
and is usually solved using a model-based approach. How-
ever, in the majority of cases, the vehicle model is affected
by parameter uncertainties and disturbances, making it not
sufficiently accurate for the traction controller design.

On dealing with perturbed and uncertain systems, an
effective approach is sliding mode control (SMC), as it
ensures the robustness of the controlled system when the
system state evolves on the so-called sliding manifold [18],
[19]. Specifically, SMC relies on a discontinuous control law,
the amplitude of which is directly related to the magnitude of
the uncertainty affecting the model. SMC has already been
adopted to design traction control strategies [20]–[22]. Yet,
this has been done under the assumption of perfectly known
model of the considered vehicle.

To better account for the heterogeneity typically present in
real-world road traffic, this work considers a more realistic
scenario in which CAVs are integrated into the freeway traffic
flow. In this scenario, each individual CAV may represent a
different type of vehicle, and the CAV models could exhibit
significant uncertainty.

To tackle this issue, inspired by [23], [24], we propose to
design the CAVs traction controllers relying on a DNN-based
Integral Sliding Mode (ISM) control approach. In particular,
two neural networks (NNs) are utilized to approximate the
dynamics of each CAV, while an integral sliding mode
(ISM) control strategy is applied to generate the required
longitudinal force for the vehicles creating the formation.
This approach ensures effective anti-skid braking and anti-
spin acceleration of the considered CAVs under all road
conditions. The formation of CAVs moving in the traffic
act as artificial moving bottlenecks (MBs). They can be
controlled with the aim of regularizing the traffic flow, thus
producing a beneficial effect on the macroscopic traffic.
The proposed control architecture, schematized in Fig. 1,
is assessed in simulation using the METANET model to
represent the macroscopic dynamic of the traffic system.

II. MULTI-SCALE MODELING

The aim of this section is to introduce the macroscopic
model of the traffic, formulated with the METANET model,
and the microscopic model of the individual CAVs.



Fig. 1: The proposed control architecture.

A. The traffic model with CAVs

Consider a freeway stretch characterized by nlanes ∈ N≥1

lanes and on which both regular vehicles and ncav ≥ nlanes

CAVs travel. Each CAV c ∈ {1, 2, . . . , ncav}, the dynamics
of which will be described in Section II-B, is characterized
by speed vc and position pc = pc(t0) +

∫ t

t0
vc(τ)dτ . Given

a set of CAVs C ⊆ {1, 2, . . . , ncav}, it constitutes a MB if:
1) |C| = nlanes; 2) |pa − pb| < ϵmb for all a, b ∈ C, with
a ̸= b, and where ϵmb ∈ R>0 is a small design threshold; 3)
the CAVs in C travel in a formation which occupies nlanes

lanes, as depicted in Fig. 1.
Coherently with the METANET model [25], the freeway

stretch can be subdivided into N ∈ N>0 sections, each
identified by an index i ∈ S, with S = {1, 2, . . . , N} and
characterized by a length Li ∈ R>0 [km]. Then, the traffic
density in section i, without considering the CAVs, is denoted
as ρi ∈ R≥0 [veh/km] and characterized by continuous time
dynamics

ρ̇i(t) =
qi−1(t)− qi(t) + ri(t)− si(t)

Li
(1)

where qi ∈ R≥0, ri ∈ R≥0, and si ∈ R≥0 represent the
traffic flows leaving section i towards section i+1, entering
section i from the on-ramp, and leaving section i through the
off-ramp, respectively. The presence of CAVs in the freeway
stretch can be taken into account defining the overall section
density

ρ̄i(t) = ρi(t) +

ncav∑
c=1

δci (t)o
c, (2)

where δci ∈ {0, 1} indicates the presence of CAV c in section
i, while oc ∈ R>0 is the occupancy [veh/km] of c [26].

As for the mean speed vi ∈ R≥0 [km/h] of section i, it is
characterized by dynamics

v̇i(t) =
V (ρ̄i(t))− vi(t)

α1
+

vi(t)[vi−1(t)− vi(t)]

Li
+

−
α2

(
ρi+1(t)− ρi(t)

)
α1Li

(
ρi(t) + α3

) − vi(t)ri(t)

Li

(
ρi(t) + α3

) , (3)

where α1, α2, α3 ∈ R>0 are model parameters, while V :
R≥0 → R≥0 is the so-called steady-state speed-density

relation, computed as

V (ρ̄i(t)) = v̄i(t) exp

{
− 1

α4

(
ρ̄i(t)

ρcri

)}
, (4)

with ρcri ∈ R>0 being the critical density and α4 ∈ R > 0 a
model parameter. The time-varying term v̄i ∈ R>0 in (4) is
the maximum speed that the vehicles can reach in section i
and it is defined as

v̄i(t) = δCi (t)vC +
(
1− δCi (t)

)
vff , (5)

where δCi ∈ {0, 1} denotes the presence of MB C in section
i, vC ∈ R>0 is the speed of the MB, while vff ∈ R>0 is the
free-flow speed.

B. Vehicle modelling

Each CAV c ∈ C is characterized by measurable state
xc =

[
xc
1 xc

2 xc
3

]⊤
=

[
vc ωc

f ωc
r

]
, where vc ∈ R is

the longitudinal speed [m/s], while ωc
f , ω

c
r ∈ R represent the

angular speed [rad/s] of the front and rear wheels, respec-
tively. Omitting the superscript c for the sake of readability,
the dynamics of the vehicle are defined as

ẋ =

m−1
(
Ffx(λf , Ffz , µ) + Frx(λr, Frz , µ)− Floss(x1)

)
−J−1

f RfFfx(λf , Ffz , µ) + J−1
f Tf

−J−1
r RrFrx(λr, Frz , µ) + J−1

r Tr


(6)

where m is the mass [kg], Tf and Tr are the input torques
[Nm] of the front and rear wheels, Jf , Rf , λf are the
moment of inertia, the radius, and the slip ratio of the front
wheel, respectively, while Jr, Rr, λr represent the same
quantities for the rear wheel. Then, Ffz and Frz are the
normal force on the front and rear wheels, computed by
ignoring the influence of suspensions as Ffz = lrmg−lhmv̇x

lf+lr

and Frz =
lfmg+lhmv̇x

lf+lr
, where lf is the distance from the

front axle to the center of gravity, lf is the distance from
the rear axle to the center of gravity, and lh is the height
of the center of gravity, while g is the gravity acceleration.
Moreover, Ffx and Frx are the front and rear longitudinal
tire–road contact forces, and they are strictly dependent on
the tire-road friction coefficient µ [27]. Finally, the slip ratios
λf and λr are defined considering the relative difference
between the wheel angular speed and the vehicle absolute
speed, distinguishing between acceleration phase and braking
phase. In particular, for p ∈ {f, r}, one has λp =

ωpRp−v
ωpRp

if

ωpRp > v and λp =
ωpRp−v

v if ωpRp < v.

III. THE PROPOSED CONTROL ARCHITECTURE

The aim of this section is to describe the proposed control
architecture, depicted in Fig. 2. In particular, the architecture
has a multi-scale structure. At a higher level, a model-
based centralized controller generates the reference speed
profiles for the MBs in the freeway stretch, while at a
low level, references for the individual CAVs in each MB
are computed and followed employing DNN-based traction
control controllers.



MBs Reference

Generation using

Traffic Model

v⋆
Cm

MB Control

vβ,⋆

vm,⋆

DNN-based TC

CAV β ∈ Cm

pβ
vβ

...

DNN-based TC

CAV m ∈ Cmpm vm

Real

Traffic

ρi ∀ i ∈ Ŝ
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Fig. 2: Block Diagram of proposed control architecture for the MB
Cm. The red block represents the macroscopic scale control, the
yellow ones the microscopic scale one, while the yellow represent
the real traffic system.

A. MB Reference Generation

Consider a stretch modeled as in Section II-A, in which
M ∈ N>0 MBs are traveling. Then, the objective of the
macroscopic scale controller, which works considering the
macroscopic traffic model, is to generate a reference speed
profile for each MB Cm, with m ∈ {1, 2, . . . ,M}, so that a
beneficial effect on the traffic flow dynamics is obtained. To
this end, an optimal control problem needs to be formulated.
In this work, the objective is to minimize the total travel
time (TTT) associated with the macroscopic traffic system.
Hence, the optimal control problem can be formulated as
follows:

v̄⋆ = argmin
v̄

∫ tk+T

tk

N∑
i=1

Liρi(t)

s.t. Traffic Dynamics (1)-(3)
0 ≤ v̄Cm ≤ vmi (t), ∀m ∈ {1, 2, . . . ,M}

where v̄ =
[
vC1

vC1
. . . vCM

]⊤ ∈ RM is the vector
containing the desired longitudinal speeds for the MBs, vmi
is the traffic mean speed of the section i in which the MB m
is located, while v̄Cm denotes the desired longitudinal speed
of the vehicles constituting the MB Cm.

B. Microscopic Scale MB Control

Once the reference speed for the MB is defined by the
macroscopic level controller, as described in the previous
section, the individual references for the CAVs composing
the MB must be defined so that they keep the formation and
then they all travel at speed v⋆Cm

.
Note that, as in Fig. 1, the CAVs in a MB may be not

perfectly aligned. Then, let c̄, c be indexes of the first and
last CAVs in the MB Cm, respectively, defined as

c̄ = arg max
c∈Cm

pc, c = arg min
c∈Cm

pc,

Then, the reference speed for c̄ is given by

vc̄,⋆(t) = min{v⋆Cm
(t) + k3

(
pc(t)− pc̄(t)

)
, vc̄i (t)}, (7)

where k3 ∈ R>0 is a design parameter. As for the CAVs
c ∈ Cm \ c̄, the reference speeds are defined as

vc,⋆(t) = min{v⋆Cm
(t) + k4

(
pc̄(t)− pc(t)

)
, vci (t)}, (8)

with k4 ∈ R>0 being a design constant.
Then, each CAV c ∈ Cm is controlled by means of a

traction controller, as depicted in Fig. 3, so that vc → vc,⋆.
In particular, following a reasoning similar to the one in
[20], it is possible to map a desired value for the slip ratios,
denoted as λ⋆

f and λ⋆
r , starting from the desired longitudinal

speed vc,⋆. The torque control signal for the wheel motors,
denoted as u =

[
Tf Tr

]⊤
is determined via the DNN-based

slip controller in Fig. 3, such that the slip ratios reach their
desired value in finite time.

Remark 1: It is important to notice that the choice of the
desired slip ratios is strictly related to the value of the tire-
road friction coefficient µ, which in general is not perfectly
known. A possible solution, which is the one adopted in this
work, is to provide an estimate of µ via a SMC observer, as
suggested in [20].

−ρ σ
||σ||

+

+

CAV Dynamics
∫

u0

DNN Φ̂

DNN Ψ̂

σ in (12)

Adaptation laws

Fig. 3: Graphical representation of the DNN-ISM based traction
controller.

Since the traction control problem can be reformulated
as a slip ratio control problem, it is worth defining an
auxiliary system characterized by states ζ =

[
λf λr

]⊤
,

with dynamics

ζ̇ =

[
hf

hr

]
+

[
bf 0
0 br

]
uλ = h+B uλ, (9)

where hf , hr, bf , and br are defined differently in the accel-
eration and in the braking phases. In particular, for p ∈ {f, r}
it holds that

hp =

− v̇
Rpωp

− vFpx

Jpω2
p

if ωpRp > v,

−Rpωpv̇
v2 − R2

pFpx

Jpv
if ωpRp < v,

bp =

{
v

JpRpω2
p

if ωpRp > v,

− Rp

Jpv
if ωpRp < v.

Then, it is possible to design an ISM control for the slip
ratio as

u = u0 − ϱ
σ

∥σ∥
, (10)

where the second component aims at rejecting possible
model mismatches and disturbances, while u0 is a continuous



control law that makes the state ζ track a desired value ζ⋆,
and σ is the so-called integral sliding variable, defined as

σ(t) = (ζ(t)− ζ⋆)− ζ(t0)−
∫ t

t0

h+Bu0(τ)dτ. (11)

As it is clear from (11), the full knowledge of the dynamics
(9) is required to design the ISM control law. Since such
knowledge is assumed unavailable, an approximated version
of (9) is employed. Specifically, two DNNs Φ̂ : R3 → R2

and Ψ̂ : R3 → R2×2 are employed to provide an estimate of
h and B in (9), so that σ can be rewritten as

σ(t) = ζ(t)− ζ(t0)−
∫ t

t0

Φ̂ + Ψ̂u0(τ)dτ. (12)

Accordingly to the theory of DNN based ISM control de-
veloped in [23] and [24], the weights of the two DNNs are
adjusted online, according to adaptation laws that are derived
directly from Lyapunov analysis. Hence, properly selecting
the weight dynamics and the gain ϱ in (10), according to [23,
Theorem 1], allows one to achieve in finite time the evolution
of the state of the controlled system in a boundary-layer of
∥σ∥ = 0. This, along with a suitable choice of u0, makes ζ
sufficiently close to the desired value ζ⋆.

IV. CONCLUSIONS AND FUTURE WORKS

This work discusses the potential of controlling CAVs,
forming MBs, at microscopic scale to positively impact
macroscopic freeway traffic dynamics. A DNN-based ap-
proach is introduced for designing the individual CAV con-
trol systems, addressing traction control even with uncertain
vehicle models. The approach ensures anti-skid braking
and anti-spin acceleration of the CAVs, while leveraging
CAVs formations as artificial moving bottlenecks to mitigate
congestion and optimize the overall travel time in the traffic
system. Future research directions may include the use to
macroscopic models which employ a stochastic fundamental
diagram (see, for instance, [28]), the extension to large scale
traffic networks, and the explicit inclusion of route choice
models.
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1 INTRODUCTION 
Short-term traffic forecasting is crucial for intelligent transportation systems, enabling real-time 
decision-making to optimize traffic flow and reduce congestion (Lin, 2023). Traditional methods based 
on historical data and statistical models struggle with sudden disruptions. To overcome these 
limitations, advanced techniques integrating dynamic traffic assignment (DTA) and real-time data 
assimilation have emerged as effective solutions. This study presents an integrated framework for 
online traffic forecasting that combines simulation-based dynamic traffic assignment (DTA) with 
Bayesian filtering techniques updating demand and flows leverging on real-time sta. The main 
contributions of this work include: 

• Development of an online simulation-based forecasting system. 
• Integration of Bayesian filtering to enhance accuracy and manage uncertainties. 
• Real-world application on a large highway network, demonstrating effectiveness 

The paper is structured as follows. Section 2 details the methodology, Section 3 presents a case study, 
and Section 4 concludes with future research directions. 

2 METHODOLOGY 
The proposed methodology integrates an online traffic simulation model with dynamic route 
assignment and Bayesian filtering. The system continuously acquires real-time traffic data, updates 
origin-destination (O-D) matrices, and executes short-term simulations to predict network conditions. 
The approach follows a rolling horizon strategy, where periodic updates refine the predictions. The 
simulation model is designed to operate in two primary modes: offline and online. In offline mode, the 
model processes historical counts data to estimate a baseline dynamic O-D demand matrix, the 
equilibrium paths and flows, which are used as an initial condition in the online mode. The online mode 
continuously updates traffic states based on real-time observations, updating the current dynamic 
matrix, respecting historical one, and predicting the dynamic OD matrix for next interval. These new 
matrices are used to perform a new dynamic assignment. The estimated flow, related to the last interval 
are used to evaluate the accuracy of the model, comparing them with real-time data and predicted 
flows are used to predict the short-term fluctuation of traffic for a dynamic response to emerging traffic 
conditions. A diagram of this approach is shown in Figure 1. In the proposed methodology, the online 
assignment procedure is performed using a rolling horizon approach. In this framework, the system 
receives real-time data updates at regular intervals Δt (e.g., 15 minutes) and utilizes this information to 
update the dynamic demand matrix over a time window extending from a preceding to a subsequent 
instant relative to the current time (e.g., 7:00–9:00 when the current time is 8:00). The updated demand 



enables a dynamic assignment for the same period, allowing the prediction of traffic conditions. 
Generally, the simulation is completed within a time interval shorter than Δt. As a result, traffic 
estimates generated before the start of a new simulation improve the results of the previous one. 

 
Figure 1.  Offline OD Estimation and On-Line Predictions.  

Dark blue is used to highlight input data, green to highlight output data, and light blue for procedures. 

To compensate for this gap, during which traffic estimates are not updated, a hybrid approach 
incorporating a Bayesian filter has been introduced. This filter integrates the model-based traffic 
forecast as a prior estimate and refines it based on real-time traffic data collected at a higher frequency 
(e.g., every 5 minutes). This process applies a gradually adjusted correction over time, which varies 
according to the deviation from the standard conditions of a typical day. 

2.1 OD ESTIMATION 
The offline OD estimation follows a simultaneous approach, correcting all time intervals of the dynamic 
OD matrix at once (Cascetta et al., 1993). This minimizes deviations from the initial seed demand while 
ensuring consistency with observed traffic counts. The process is formulated as a Generalized Least 
Squares (GLS) optimization problem, balancing differences between estimated and seed OD matrices 
and discrepancies in assigned vs. observed flows. Conversely, the online OD estimation adopts a 
sequential approach, where the OD matrix for the current interval is updated using real-time traffic 
counts before forecasting future matrices. This method enhances computational efficiency and 
responsiveness, making it suitable for real-time applications. Future OD estimates are generated 
through an autoregressive model, leveraging historical trends to predict demand variations ensuring 
real-time forecasting capability. 

2.2 DYNAMIC TRAFFIC ASSIGNMENT 
The Dynamic Traffic Assignment (DTA) model implemented in the online simulation framework 
integrates a parallel time-dependent path computation strategy, a second-order macroscopic traffic 
flow model, and an iterative demand correction mechanism. The combination of these components 
enables real-time traffic forecasting and decision support for traffic management systems. (Ben-Akiva 
et al., 2012, Florian et al, 2005) 

2.2.1 Path Computation 
The Shortest Path Problem (SPP) computation uses a parallelized time-dependent search algorithm 
(Sung et al., 2000), adapted from Dijkstra's method to handle time-dependent costs and prohibited 
maneuvers (Gutiérrez & Medaglia, 2007) via a link-labeled approach. In the offline phase, it computes 
optimal paths for each OD pair and departure interval, iterating until a minimum number (k) of paths is 
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reached, after which equilibrium paths are stored. In the online phase, precomputed paths serve as a 
baseline, but the system dynamically adapts to real-time congestion and incidents, ensuring adaptive 
route selection and preventing outdated path choices from distorting the simulation. 

2.2.2 Traffic Flow Model 
The traffic flow component of the model is based on a second-order macroscopic approach, which 
provides a more accurate representation of congestion dynamics, especially in high-density 
conditions. The model performs a preliminary loading of path flows, which are redistributed according 
to the equilibrium proportions. Using equilibrium travel times, the flow propagation is computed, 
determining arc flows and splitting rates. Finally, these outputs, along with the path assignments, are 
used as inputs for the second-order highway flow model, which simulates the updated demand on the 
network and enables the estimation of new travel times for each arc. 

2.2.3 Online application of the simulation-dynamic assignment model 
In the online implementation, the general model continuously updates demand and traffic conditions 
to align with real-time data, constantly adapting to the evolving network state. The dynamic traffic 
assignment (DTA) framework consists of a structured sequence of operations. First, the system loads 
the precomputed equilibrium paths from the offline phase, which serve as a reference for route 
selection. The updated demand is then dynamically distributed across these paths based on the real-
time OD correction. Subsequently, the second-order macroscopic traffic flow model simulates the 
evolution of traffic conditions over the forecasting horizon, capturing congestion dynamics and flow 
propagation. As new simulated data become available, travel times are recalculated, and the route 
assignment is dynamically adjusted to reflect current conditions. In the presence of traffic anomalies, 
the system introduces alternative paths, enabling a rapid response to significant deviations from 
expected conditions.  

2.3 BAYESIAN FILTERING LOGIC  
The Bayesian filtering approach is integrated into the simulation model to enhance the accuracy of real-
time traffic forecasts by combining model-based estimates with observed traffic data. The 
methodology relies on an autoregressive model, which utilizes past observations to predict future 
traffic variables (flow, speed, and density). The forecast is updated using Bayes' theorem, where the 
prior estimate is derived from the simulation model, and the posterior estimate is obtained by 
combining this prediction with a statistical extrapolation of the most recent observations. The filter 
dynamically adjusts the weight assigned to observations relative to model predictions, adapting to 
traffic conditions. Under normal conditions, greater confidence is given to the model’s forecast, 
ensuring stability in the prediction process. However, in the presence of anomalies such as incidents 
or unexpected congestion, the weight of real-time observations increases, allowing for a rapid 
correction of the forecast and improving the system’s responsiveness to sudden changes in traffic 
dynamics. Additionally, the methodology incorporates a time-smoothed correction coefficient, which 
modulates the forecast update based on the prediction horizon. In the short term, real-time data 
dominate the correction process, while in the medium to long term, the forecast gradually aligns with 
the model output. (Castillo at al. 2008, Li & Xie, 2024) 

3 REAL CASE APPLICATION  
3.1 CASE STUDY DESCRIPTION 
The proposed traffic simulation and forecasting framework was embedded within the DSS of the control 
room of ”Concessioni Autostradali Venete” (CAV), a highway network that includes the A4 “Passante di 
Mestre”, the A57 “Tangenziale di Mestre”, and the “Raccordo Autostradale” to “Marco Polo Airport”. 
This infrastructure experiences significant traffic volumes, with frequent congestion, especially near 



urban areas and major interchanges. The framework support the DSS in traffic management strategies 
such as variable speed limits (VSL) and dynamic lane control, including the opening of emergency lanes 
under specific traffic conditions. The simulation-forecasting model provides real-time estimations of 
traffic flow, speed, and congestion levels, allowing operators to proactively implement regulation 
measures to mitigate delays and improve network performance. 

3.2 PREDICTION RESULTS  
Results from real-world deployment demonstrated the system's high accuracy in traffic state 
prediction, with a deviation of less than 10% in flow estimates compared to sensor data. The integration 
of the Bayesian filtering technique enhanced anomaly detection and traffic state estimation, ensuring 
adaptive corrections to unexpected congestion patterns. The dynamic assignment model effectively 
redistributed demand under varying conditions, preventing the propagation of bottlenecks and 
improving overall network efficiency. The integration of this simulation-forecasting framework into the 
CAV DSS has proven instrumental in optimizing control measures, enhancing safety, and reducing 
travel times, making it a valuable tool for real-time highway traffic management. 

 
Figure 2. Flows observed in a road section at time t=509 and flows simulated at subsequent intervals 

Figure 2 shows the flow forecasts on a road segment resulting from the application of the entire 
assignment fragment and the Bayesian filter for different time intervals with respect to space. It can be 
observed that for the interval following the application of the filter (interval t = 510) the forecast obtained 
is very similar to the observed values and as for long-term forecasts (100 minutes) the values are 
towards the observed historical values. 

4 CONCLUSIONS  
The integration of the traffic simulation and forecasting framework within the CAV Decision Support 
System (DSS) has demonstrated its effectiveness in real-time traffic management, enabling dynamic 
control strategies such as variable speed limits and emergency lane usage. The system's ability to 
continuously update OD demand, dynamically reassign traffic flows, and incorporate Bayesian filtering 
has significantly improved traffic state estimation and anomaly detection.  
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Transport networks are inherently complex systems that are highly susceptible to events of 
disruption and degradation (Sun et al., 2020). They are not only interconnected and interdependent 
but also intricately linked with broader socioeconomic and environmental systems. Consequently, 
disruptions in transport can trigger significant societal impacts. This is the case, for instance of 
railways systems which are relevant component of regional economies, underscoring the 
importance of studying their vulnerabilities in order to improve their resilience to disruptions in 
space and time. 

There are diverse views on how to quantify vulnerability with respect to different hazards. In the 
context of this work, vulnerability is intended as the propension of the hazard to generate direct 
and indirect damages to things and people (Berdica, 2002). The quantification of such damage, in 
turn, represents the exposure to the hazard. Henceforth, the concept of vulnerability is closely tied 
to the transportation supply, whereas the exposure is related to travel demand. For example, a 
network with alternative and redundant path alternatives might be less vulnerable than a network 
with a limited number of paths which in case of disruption could fail to guarantee connections on 
some origin-destination (OD) pairs. The estimated number of travellers affected by the connection 
loss represents the exposure to the disruption. 

Estimating vulnerability and exposure to hazards is particularly challenging for scheduled service 
systems (e.g., railways network), since the diversion to alternative services in case of disruption is 
constrained and limited by the scheduled nature of the service in space, described by the availability 
only at terminals, and also in time, described by the availability according to timetable only in certain 
time instants. In the literature, vulnerability assessment is approached in two predominant ways 
(Mattsson and Jenelius, 2015): topological and system-based. Topological approaches, rooted in 
graph theory, assess the vulnerability of a transportation system based solely on the physical 
configuration of the network. On the other hand, system-based approaches integrate supply-
demand interactions to account for travellers’ responses to disturbances and disruptions factors. 
The latter approach proves itself to be more effective in assessing the real-world impacts of 
disruptions, yet it requires also data for the travel demand estimation. Topological approaches are 
simpler in terms of methodological and data requirements, yet they prove inadequate for analysing 
scheduled service systems, such as rail system, as they fail to account for the time dimension of the 
supply. For instance, the same type of disruption (e.g. an interruption of a section of the network or 
in a station) may have different impacts according to time of the day, depending on the number of 
services operating along the network at that time. 



This paper aims to assess, using a schedule-based modelling approach (Nuzzolo et al., 2002), railway 
networks vulnerability including disruptions not only in terms of structural damage to the physical 
infrastructure but also in relation to the temporal availability of services. Unlike traditional methods, 
this approach considers both where and when a disruption occurs, allowing for a more 
comprehensive analysis of its impact. Two types of indicators are proposed: topological indicators, 
which measure the number of affected services, and system-based indicators, which also account 
for the number of impacted travellers, estimated through a schedule-based assignment. 

The proposed approach is applied to the Italian HSR network to compute and compare these 
indicators. Topological indicators rely on classical graph theory metrics—such as strength centrality, 
betweenness centrality, and clustering coefficient (Zhou et al., 2019)—calculated on a diachronic 
graph of HSR services. System-based indicators, on the other hand, incorporate passenger flows 
derived from a schedule-based HSR assignment model (Silvestri et al., 2024), capturing the 
interaction between supply and demand. By comparing these results, we highlight significant 
differences between the two perspectives, providing deeper insights into the key factors influencing 
disruption vulnerability and network exposure. 

This research contributes to the broader discourse on transportation system vulnerability, providing 
a new methodological approach that integrates both topological and systemic analyses to 
diachronic networks. Findings suggest that the proposed approach offers valuable insights for 
assessing the vulnerability of the national HSR system, supporting the development of actions to 
make the system more resilient, i.e. capable of withstanding disruptive events.  
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Abstract

A significant challenge in the public transit is integrating passenger route choice and vehicle scheduling. Passengers
choose routes based on transit supply, while transit operators design timetables based on ridership. Existing studies
often address these problems separately. Our research jointly solves them using a novel local search framework for
the Heterogeneous Multi-Depot Vehicle Scheduling Problem (HMDVSP). User sensitivity to supply perturbations is
assessed using an agent- and schedule-based Public Transit Assignment (PTA) framework that incorporates explicit
capacity constraints. The proposed framework is parallelized and can simulate real-world transit networks with
heterogeneous fleets and millions of door-to-door queries within a few hours. Using this model, we explore practical
applications, such as (1) assigning trips to a heterogeneous fleet of buses (2) comparing passenger ridership and
revenue for homogeneous and heterogeneous fleets, and (3) fleet planning to meet future demand.

Keywords: transit assignment, vehicle scheduling, local search, route choice

1 Introduction

The planning process for public transportation systems typically involves four key stages: network design, timetabling,
Vehicle Scheduling Problem (VSP), and crew scheduling. For a given timetable, Public Transit Assignment (PTA)
can be used to predict travelers’ route choices for a given supply configuration. Transit operators continually enhance
service quality to make public transit an attractive travel and commuting option. However, the effectiveness of supply-
side improvements is dependent on the complex nature of user behavior. Unlike most personal vehicle users, transit
riders typically consider multiple criteria when selecting their journeys (or routes), such as in-vehicle travel time,
waiting time, walking distance, cost, number of transfers, and crowding levels. Supply-side changes can impact many
of these features and thus ridership. Ridership can also be used to tweak supply to improve transit operator efficiency.
Studies that capture this dependence are relatively sparse owing to increased computational complexity. Though some
works combine passenger behavior into vanilla VSPs (Liu and Ceder, 2017), its effect on Heterogeneous Multi-Depot
Vehicle Scheduling Problem (HMDVSP) remains largely unexplored. To address this gap, we introduce an iterative
HMDVSP and PTA framework that captures the user sensitivity to supply perturbations while maximizing the net
profit/loss, defined as earnings from ticket sales minus the crew salaries and fuel expenses. We assume that the demand
is captive and do not model elasticity. Although profit/loss should not be the primary goal of a public transit operator,
our objective helps cut down costs by carefully allocating buses of different capacities to timetabled trips depending
on the vehicle occupancies.

2 Methodology

Preliminaries: A bus rotation denotes a list of trips that can be performed in sequence, including the two deadhead
trips (if any), i.e., from the starting depot to the initial stop of the first trip and from the final stop of the last trip
to the ending depot. Buses start and end their rotation at the same depot. Each depot has a maximum capacity for
housing buses. A list of bus rotations forms a valid schedule if (1) depot capacity limits are not exceeded and (2) each
trip is assigned to a single bus. A pair of trips are time compatible if the bus has enough time to travel from the end
point of the first trip to the start of the next trip. The goal of our work is to find a schedule that optimizes the net
profit/loss, which deducts the operational costs from the revenue from ticket sales. The revenue is calculated as the
product of total passenger km and fare per km. The operational cost include crew and fuel expenses. We set crew
costs by multiplying a fixed crew pay rate and total working hours. The fleet comprises buses of different capacities,

1



with a fixed number of buses available in each category. We differentiate fuel costs based on capacity and calculate it
by multiplying bus mileages with the total distance traveled. Bus acquisition costs are not considered but they can be
trivially incorporated in our framework.

To evaluate the impact of changes in transit supply on ridership, we need a tractable PTA tool. To address this
challenge, we developed a simulation-, agent-, and schedule-based PTA framework that incorporates explicit capacity
constraints. Figure 1 presents two main modules of the PTA framework: Equilibration which allows time-table
updates and tracks flow-based convergence and Network Loading for route choice and flow propagation with capacity
restrictions. The simulation starts with the Initialize Agents function in the equilibration module, which sets agent
attributes. If an agent a has not reached their destination, Csg identifies available journeys using the Trip-Based Public
Transit Routing (TBTR) algorithm (Witt, 2015; Agarwal and Rambha, 2024). Next, Css selects a preferred journey
the available journey set using a mixed multinomial logit model combined with path size to account for overlapping
journeys. Once each agent has a preferred journey, the Concatenate and Load Agents functions identify agents
who are unable to complete their desired journey as they were denied boarding at some intermediate point due to
capacity constraints. For such agents, the Update Agents function resets their attributes. Due to stochasticity in
the choice model, we repeat the Network Loading λ times, to capture variability. Each network loading can be
viewed as a single realization or a day of transit operations and the repetitions give a more stable estimate of passenger
flow and load patterns across routes. After λ cycles, we call Update Timetable in the equilibration module to adjust
timetables based on transit trip dwell times. If convergence is not reached, the iteration counter increments, agents
reinitialize, and the process repeats. This mimics a scenario where operators adjust schedules periodically to minimize
deviations between planned and actual operations.
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Figure 1: Proposed public transit assignment framework

Integrated HMDVSP Framework: Figure 2 illustrates the proposed local search framework. The framework
consists of two phases: an Initialization phase, which generates an initial feasible schedule, and a Main Process, which
iteratively perturbs and refines the solution.

Initialization: We start with a greedy algorithm called Concurrent Scheduler to assign trips to buses. The
process begins by sorting all trips in ascending order based on their departure times from their first stop. The first trip
is assigned to the first available bus. For each subsequent trip j, the algorithm evaluates its temporal compatibility
with the most recently assigned trip i in every existing bus rotation. If trip j is compatible with trip i, it is appended
to the first corresponding bus rotation that meets the compatibility criteria. If no compatible bus rotation is found, a
new bus is assigned to handle trip j. Once the trips are assigned, bus capacities are determined in two steps. First,
the PTA is solved under the assumption that each bus has unlimited capacity. This yields an uncapacitated estimate
of the ridership for each trip. Second, bus capacities are assigned based on the ridership estimates using an integer
program. Let V denote the list of bus IDs currently in use. For a bus u ∈ V , say Ru represents its rotation. Let o(j,m)
denote the ridership of the mth link (a link is a stop-to-stop movement without any intermediate halt) in trip j, and
let xu,c be a binary decision variable that equals 1 if bus u is assigned capacity c ∈ C, where C is the list of unique
bus capacities. For a trip j, m ∈ (0, lj − 1) , where lj denotes the number of stops in trip j. The objective function in
(1) minimizes the number of passengers that exceed the assigned capacity of the bus. Constraint (2) ensures that each
bus is assigned exactly one capacity type, while Constraint (3) limits the total number of buses assigned to a specific
capacity type to the maximum number of buses available in that category.
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min
∑
c∈C

∑
u∈V

xu,c

∑
j∈Ru

lj−1∑
m=1

max(0, o(j,m)− c)︸ ︷︷ ︸
Demand Denied

(1)

s.t.
∑
c∈C

xu,c = 1 ∀u ∈ V (2)∑
u∈V

xu,c ≤ βc ∀ c ∈ C (3)

xu,c ∈ {0, 1} ∀u ∈ V, c ∈ C (4)

Main Process: The valid schedule generated during the Initialization phase is iteratively refined using a local search
framework until maximum runtime criterion is met. In each iteration, nine operators are applied sequentially on a list
of the top-ν best schedules. Each operator selects a schedule from this list and generates a new candidate schedule.
If the new schedule outperforms the worst schedule in the list, it replaces the latter, similar to genetic algorithms.
This population approach helps explore the search space better and can prevent local optima. The operators can be
categorized into three groups: Homogeneous, Heterogeneous, and Capacity-based.
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Figure 2: Local Search Architecture

Homogeneous Operators: These operators involve exchanging or shifting trips between buses of the same capacity.
Since the trip capacities do not change, the ridership remains the same. Consequently, these are computationally
efficient and can do an exhaustive search among all possible exchanges or shifts. They include three operators:
Homogeneous Trip Shift (HTS), Homogeneous Trip Exchange (HTE), and Depot Swap (DS). HTS and HTE aims
to minimizes the fuel cost by deadhead distance. For instance, in HTS buses are sorted in descending order based on
the number of assigned trips. For each bus, the algorithm iterates through its trips and identifies the best valid shift to
another bus of the same capacity. If no valid shift is found, a new bus of the same capacity is introduced (if available).
DS minimizes the fuel cost by reducing the deadhead distance (to and from the depot). To do so, we iterate over
all the rotations and assign them to the depot closest to the starting stop of the first stop (subject to depot capacity
constraints).

Heterogeneous Operators: This category comprises three operators: Heterogeneous Trip Exchange Revenue
(HER), Heterogeneous Trip Exchange Deadhead (HED), and Heterogeneous Trip Shift (HES). The core idea behind
these operators is to rank buses based on specific criteria and then explore potential shifts or exchanges. Heterogeneous
operators are computationally expensive due to their impact on trip capacity, which requires invoking PTA. To manage
this issue, we draw inspiration from Tabu Search by maintaining a list of tabu moves to avoid revisiting ineffective
solutions. For example, HER focuses on maximizing revenue. It begins by copying the trips into two lists, say T and
T ′. The trips in list T are sorted by the total number of unoccupied seats across all links, while T ′ is sorted by the
number of fully occupied links (both in descending order). For each pair of trips {(t, t′) : t ∈ T , t′ ∈ T ′}, the algorithm
checks if (t, t′) is not in HER’s tabu list. If not, PTA is invoked to evaluate the swap. This process continues for a
fixed time budget. HED and HES optimize the deadhead distance by exchanging and shifting trips, respectively.

Capacity-based Operators: As the name suggests, these operators swap/change the capacity of the buses. Unlike
the above two categories that exchange/swap trips between two busses, operators in this category perform larger
perturbations as the capacities of all the trips being executed by the bus are changed at once. Specifically, we propose
three operators: Capacity-Down (CBD), Capacity-Up (CBU), and Capacity-Swap (CBS). CBD reduces fuel costs by
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lowering the capacity of a selected bus to the next lower level c ∈ C, provided buses of capacity c are available. Buses
with lower capacity typically have higher mileage. However, this may lead to revenue loss due to reduced seating. To
mitigate this, buses are ranked by the number of unoccupied seats, prioritizing those with minimal potential revenue
loss. CBU increases the capacity of a bus to the next upper level (if available), prioritizing buses where the additional
revenue from ticket sales outweighs the increased fuel consumption. Buses are ranked based on the number of fully
occupied links across all trips. Instead of modifying a single bus, we draw inspiration from variable neighborhood
search and employ an adaptive block-size strategy to control the number of buses perturbed in each iteration.

3 Experiments

All operators described earlier were implemented in Python 3, while the PTA framework was developed in C++.
Experiments were conducted on two U.S. transit networks: Santa Barbara, CA and Columbus, OH. Passenger route
choice was modeled based on in-vehicle travel time, number of transfers, walk time, and crowding. Sensitivity param-
eters for the route choice model, along with the origin-destination matrix, fleet configuration, depot locations, and
bus mileage, were synthetically generated using online sources. Each network was allocated a maximum runtime of 8
hours. For the PTA framework, the analysis was limited to a single network loading and one equilibration iteration.
Figure 3 illustrates the variation in daily net revenue (in $) across iterations. The green, blue, and red lines denote
the maximum, mean, and minimum net revenue, respectively.
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Figure 3: Daily net revenue in dollars for Santa Barbara (left) and Columns (right). The green, blue, and red lines
denote the maximum, mean, and minimum net revenue, respectively

Full Paper Outlook: Full paper includes details on the proposed operators. An extensive set of experiments will be
conducted to check the efficacy of the proposed framework. Further, we also aim to study policy implications, such
as what happens if the fleet transitions from homogeneous to heterogeneous. By embedding the proposed framework
inside a Bayesian Optimization framework, we also evaluate future scenarios such as given budget constraints, what
buses should be acquired to meet future demand.
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Exploring multiple traffic assignment solutions

resulting from economies of scale

Gunnar Flötteröd and David Watling

February 2025

1 Motivation

Economies of scale arise when the utility of a good increases with its usage.
We give two examples in the transportation context. (i) In freight assignment,
increasing the demand for one shipment alternative allows to deploy larger ve-
hicles and terminals, which reduces the unit shipment cost and may further
increase the demand for this alternative. (ii) Including shared mobility services
with adaptive pricing schemes in public transport assignment means that the
high usage of a shared service allows the provider to reduce its price and further
increases its attractiveness.

Including such scale effects in traffic assignment easily leads to a multiplicity
of solution points (equilibria). The objective of this ongoing work is to devise
techniques that support the credible deployment of simulation-based traffic as-
signment in settings where a multiplicity of solutions can be expected. See
Schmöcker et al. (2014) and Bar-Yosef et al. (2013) for further illustration.

Technically, we consider a discrete-time stochastic assignment process with a
stationary distribution of several islands of (weakly connected) probability mass.
The process spends, on average, enough iterations in one such region to settle
in an apparently stationary local distribution before eventually (stochastically)
leaving that region and settling somewhere else. This means that observing the
process over a limited number of iterations may give a starting point dependent
impression of its stationary distribution. This effect has already been described
by Watling (1996); our work is more geared towards the study of scale effects.

2 Basic setup

Consider a population of decision-making agents indexed by n = 1, . . . , N . De-
note the choice set of agent n by Cn. Let C1:N = C1 × C2 × . . . × CN be the
population’s joint choice set, and let i1:N ∈ C1:N represent the choices of all
agents.

We are interested in studying models for policy analysis and introduce a
policy parameter λ ∈ [0, 1] where zero means ”base case”, one means ”policy
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case”, and values in-between represent a partical policy implementation. A
policy may affect agent choices as well as the network loading, as described
immediately below.

Let X be the set of physical system states, and let g : (C1:N , [0, 1]) → X
be the policy-sensitive network loading where g(i1:N , λ) computes the network
conditions resulting from the choices i1:N given the policy λ. Each agent is
equipped with a policy-sensitive choice model Pn : (Cn,X , [0, 1]) → [0, 1] where
Pn(i | x, λ) is the probability that agent n chooses alternative i given the net-
work conditions x and policy λ. Let P : (C1:N ,X , [0, 1]) → [0, 1] represent the

population choices in that P (i1:N | x, λ) =
∏N

n=1 Pn(in | x, λ).
A simple simulation version of the considered process model is given in Al-

gorithm 1. For simplicity, agents only remember their most recent network
condition experience.

Algorithm 1 Stochastic process assignment model

Set policy parameter λ.
Set initialize initial network conditions x(0).
for k = 1, 2, . . . do

Simulate choices i
(k)
1:N ∼ P (· | x(k−1), λ).

Simulate network conditions x(k) = g(i1:N , λ).
end for

3 Small example

We consider a two-alternative scenario with N = 1000 homogeneous agents who
all face identical choice sets C1 = . . . = CN = {1, 2}. The network loading is
policy-insensitive and merely counts the number of agents using alternative one:

g(i1:N , λ) =

N∑
n=1

1(in = 1). (1)

A binomial logit choice model, common to all agents, reflects utilities of scale:

Pn(1 | x, λ) = eµ·x/N

eµ·x/N + eµ·(1−x/N)
(2)

with µ ≥ 0. Policy-sensitivity will be established further below by making µ a
function of λ.

The positive µ parameter in combination with utility increasing with the use
of an alternative suggests that this scenario has a tendency to attain stationarity
either at x values relatively near zero or relatively near N , with possibly very
rare switches in-between. Figure 2 illustrates the number of alternative-1 users
over 10’000 assignment iterations for µ = 2.08. One observes that the system
may stay for thousand of iterations in a state where most decision makers use one
particular alternative before flipping to the opposite situation of most decision
makers using the other alternative.
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Figure 1: Small example. One process realization.

4 Metropolis Hastings based model analysis

To explore solution multiplicity, we deploy the Metropolis-Hastings (MH) algo-
rithm (Hastings, 1970). We define the state space explored by the MH process
as X ×C1:N ,×[0, 1], where one element (x, i1:N , λ) of this state space consists of
a realization of the network conditions, choices for all agents in the population,
and a setting of the policy parameter.

Letting ϕ : X → R+ denote a zero-centered probability density function over
the network conditions, we construct the proposal distribution

q ((x, i1:N , λ) → (x′, i′1:N , λ′)) = ϕproposal(x− x′) · P (i′1:N | x′, λ′), (3)

meaning that simulating a proposal amounts to (i) uniformly drawing λ between
zero and one, (ii) drawing x′ from a distribution centered at x, and drawing i′1:N
by evaluating the choice model given x′ and λ′.

As the target weights, we use

w(x, i1:N , λ) = P (i1:N | x, λ) · ϕtarget(x− g(i1:N , λ)), (4)

where the first factor evaluates the likelihood of obtaining the choices i1:N given
the network conditions x and the second factor measures the deviation between
the network conditions x and the result from a network loading of the choices
i1:N . In combination, these terms measure the mutual consistency of travel
choices and network conditions; this aims to approximate the stationary condi-
tions attained by Algorithm 1.

Given these choices of proposal distribution and target weights, we obtain
the simple acceptance probability

α ((x, i1:N , λ) → (x′, i′1:N , λ′)) = min

{
1,

ϕtarget(x
′ − g(i′1:N , λ′))

ϕtarget(x− g(i1:N , λ))

}
. (5)
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Important for practical use with a black-box simulator, this setting requires only
drawing choices and loading the network; no knowledge of the underlying choice
distribution or concrete properties of the network loading is needed.

5 Small example, continued

We create a policy-sensitive version of the small example by letting

µ = µ(λ) = (6λ− 3)2 + b (6)

with b a structural model parameter; we explore below cases with b ∈ [1, 4]. For
any value of b within that range, µ is strictly positive; it is largest for λ = 0 and
λ = 1 and smallest for λ = 0.5. By construction, µ(0) = µ(1) so that there is
no difference between the base case and the policy case.

We assume that data collected from reality indicates that the base case
solution is the one with relatively few users on alternative one, i.e. x near zero
for λ = 0. Given this starting point, we would like to anticipate the effect of
gradually introducing the policy measure, i.e. moving λ from zero to one. For
this, we deploy the MH algorithm where we instantiate both ϕproposal and ϕtarget

as univariate Gaussian distributions with zero mean and a standard deviation
of five.

We run four experiments. All experiments initialize the MH process with
x = 0 as an approximation of the observable base case. Extracting one sample
every 10’000 iterations and collecting in total 1000 samples per experiment (we
did not attempt to fine-tune the algorithm) yields the results shown in Figure 2.

Each single point (λ, x) represents a policy parameter λ and a realization
of the approximate corresponding stationary number of alternative-1 users x.
For b = 3 and b = 2.5, a unique path to the policy case λ = 1 is identified.
At b = 2.0, a bifurcation arises, and the MH algorithm succeeds to explore all
branches of this bifurcation. At b = 1.0, two consecutive bifurcations can be
observed. The solutions around x = 0 resp. x = 1000 are locally stable (may
persist for many iterations), and those around x = 500 are unstable.

Even though available real data may allow to select the right solution in
the base case (i.e. to push the simulation model by calibration towards a state
that is compatible with the data), this is not possible in the policy case. Which
solution a simulation model will predict in the policy case is, without further
analysis, a matter of chance (in that it depends on how the simulation model is
internally initialized).

The MH analysis thus yields (also practically) valuable insight. For b =
3, 2.5, it supports the prognosis that the policy case will not differ from the base
case. For b = 1, 2, it indicates that the result of implementing the policy is
diametrically ambiguous, indicating a need for policy refinement or at least a
very careful approach to assessing its implications.
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Figure 2: Small example. Alternative-1 users over policy parameter.
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6 Outlook

We aim to operationalize the analysis presented here for large-scale simulation
models in complex scenarios where solution multiplicity can no longer be an-
alyzed by inspecting model structure (as in Iryo and Watling, 2019) or with
anecdotal simulation evaluations. The MH machinery is versatile but computa-
tionally demanding; this needs to be addressed. We work towards the Swedish
national freight model Samgods (Westin et al., 2016) as a real-world test case.
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